Documentation: https://mmrazor.readthedocs.io/
English | 简体中文
MMRazor is a model compression toolkit for model slimming and AutoML, which includes 3 mainstream technologies:
It is a part of the OpenMMLab project.
Major features:
Compatibility
MMRazor can be easily applied to various projects in OpenMMLab, due to the similar architecture design of OpenMMLab as well as the decoupling of slimming algorithms and vision tasks.
Flexibility
Different algorithms, e.g., NAS, pruning and KD, can be incorporated in a plug-n-play manner to build a more powerful system.
Convenience
With better modular design, developers can implement new model compression algorithms with only a few codes, or even by simply modifying config files.
Below is an overview of MMRazor's design and implementation, please refer to tutorials for more details.
This project is released under the Apache 2.0 license.
v0.1.0 was released in 12/23/2021.
Results and models are available in the model zoo.
MMRazor depends on PyTorch and MMCV. Below are quick steps for installation. Please refer to get_started.md for more detailed instruction and dataset_prepare.md for dataset preparation.
conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
git clone https://github.com/open-mmlab/mmrazor.git
cd mmrazor
pip install -v -e . # or "python setup.py develop"
Please refer to train.md and test.md for the basic usage of MMRazor. There are also tutorials:
If you find this project useful in your research, please consider cite:
@misc{2021mmrazor,
title={OpenMMLab Model Compression Toolbox and Benchmark},
author={MMRazor Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmrazor}},
year={2021}
}
We appreciate all contributions to improve MMRazor. Please refer to CONTRUBUTING.md for the contributing guideline.
MMRazor is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new model compression methods.
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Комментарии ( 0 )