1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/CV_Lab-gradio_yolov5_det_blocks

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Это зеркальный репозиторий, синхронизируется ежедневно с исходного репозитория.
Клонировать/Скачать
blocks_04.py 5.5 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
13339479676 Отправлено 21.12.2022 12:15 da19c02
# Gradio YOLOv5 Det Blocks 04
# 创建人:曾逸夫
# 创建时间:2022-06-07
# 功能描述:单图片,清除
from util.gradio_version_opt import gr_v_opt
gr_v_opt()
import argparse
import csv
import gc
import json
import sys
from collections import Counter
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import torch
import yaml
from PIL import Image, ImageDraw, ImageFont
ROOT_PATH = sys.path[0] # 根目录
# yolov5路径
yolov5_path = "ultralytics/yolov5"
# 本地模型路径
local_model_path = f"{ROOT_PATH}/models"
# Gradio YOLOv5 Det版本
GYD_VERSION = "Gradio YOLOv5 Det block 04"
# 模型名称临时变量
model_name_tmp = ""
# 设备临时变量
device_tmp = ""
# 文件后缀
suffix_list = [".csv", ".yaml"]
# 字体大小
FONTSIZE = 25
# 目标尺寸
obj_style = ["小目标", "中目标", "大目标"]
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det block 04")
parser.add_argument(
"--model_cfg_p5",
"-mc5",
default="./model_config/model_name_p5_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# yaml文件解析
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, encoding="utf-8").read())
# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# 模型名称
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
elif file_suffix == suffix_list[1]:
# 模型名称
file_names = yaml_parse(file_path).get(file_tag) # yaml版
else:
print(f"{file_path}格式不正确!程序退出!")
sys.exit()
return file_names
def clear_image():
return None
# 模型加载
def model_loading(model_name):
# 加载本地模型
try:
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
model = torch.hub.load(
yolov5_path,
"custom",
path=f"{local_model_path}/{model_name}",
device="cuda:0",
force_reload=False,
_verbose=True,
)
except Exception as e:
print("模型加载失败!")
print(e)
return False
else:
print(f"🚀 欢迎使用{GYD_VERSION}{model_name}加载成功!")
return model
# YOLOv5图片检测函数
def yolo_det(img, model_name, infer_size, conf, iou):
global model, model_name_tmp
if model_name_tmp != model_name:
# 模型判断,避免反复加载
model_name_tmp = model_name
print(f"正在加载模型{model_name_tmp}......")
model = model_loading(model_name_tmp)
else:
print(f"正在加载模型{model_name_tmp}......")
model = model_loading(model_name_tmp)
# -----------模型调参-----------
model.conf = conf # NMS 置信度阈值
model.iou = iou # NMS IOU阈值
model.max_det = 1000 # 最大检测框数
results = model(img, size=infer_size) # 检测
results.render() # 渲染
det_img = Image.fromarray(results.ims[0]) # 检测图片
return det_img
def main(args):
gr.close_all()
slider_step = 0.05 # 滑动步长
nms_conf = args.nms_conf
nms_iou = args.nms_iou
model_cfg_p5 = args.model_cfg_p5
inference_size = args.inference_size
# 模型加载
model_names_p5 = yaml_csv(model_cfg_p5, "model_names")
with gr.Blocks() as gyd:
with gr.Box():
with gr.Row():
gr.Markdown("### P5检测")
with gr.Row():
with gr.Column():
with gr.Row():
inputs_img_p5 = gr.Image(image_mode="RGB", source="upload", type="pil", label="原始图片")
with gr.Row():
inputs_model_p5 = gr.Radio(choices=model_names_p5, value="yolov5s", label="P5模型")
with gr.Row():
inputs_size_p5 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="推理尺寸")
with gr.Row():
input_conf_p5 = gr.inputs.Slider(0, 1, step=slider_step, default=nms_conf, label="置信度阈值")
with gr.Row():
inputs_iou_p5 = gr.inputs.Slider(0, 1, step=slider_step, default=nms_iou, label="IoU 阈值")
with gr.Row():
clear_btn = gr.Button('Clear')
det_btn_01 = gr.Button(value='Detect 01', variant="primary")
with gr.Column():
with gr.Row():
outputs_img_p5 = gr.Image(type="pil", label="检测图片")
det_btn_01.click(fn=yolo_det,
inputs=[inputs_img_p5, inputs_model_p5, inputs_size_p5, input_conf_p5, inputs_iou_p5],
outputs=[
outputs_img_p5,])
clear_btn.click(fn=clear_image, inputs=[], outputs=[inputs_img_p5])
gyd.launch(inbrowser=True)
if __name__ == '__main__':
args = parse_args()
main(args)

Комментарий ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://gitlife.ru/oschina-mirror/CV_Lab-gradio_yolov5_det_blocks.git
git@gitlife.ru:oschina-mirror/CV_Lab-gradio_yolov5_det_blocks.git
oschina-mirror
CV_Lab-gradio_yolov5_det_blocks
CV_Lab-gradio_yolov5_det_blocks
master