We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.
@inproceedings{guo2020single,
title={Single path one-shot neural architecture search with uniform sampling},
author={Guo, Zichao and Zhang, Xiangyu and Mu, Haoyuan and Heng, Wen and Liu, Zechun and Wei, Yichen and Sun, Jian},
booktitle={European Conference on Computer Vision},
pages={544--560},
year={2020},
organization={Springer}
}
Dataset | Supernet | Subnet | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download | Remarks |
---|---|---|---|---|---|---|---|---|---|
ImageNet | ShuffleNetV2 | mutable | 3.35 | 0.33 | 73.87 | 91.6 | config | model | log | MMRazor searched |
Note:
python ./tools/mmcls/train_mmcls.py \
configs/nas/spos/spos_shufflenet_supernet_imagenet.py \
--work-dir $WORK_DIR
python ./tools/mmcls/search_mmcls.py \
configs/nas/spos/spos_shufflenet_evolution_search_imagenet.py \
$STEP1_CKPT \
--work-dir $WORK_DIR
python ./tools/mmcls/train_mmcls.py \
configs/nas/spos/spos_shufflenet_subnet_imagenet.py \
--work-dir $WORK_DIR \
--cfg-options algorithm.mutable_cfg=$STEP2_SUBNET_YAML
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Комментарий ( 0 )