# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import time import warnings import mmcv import torch from mmcls.apis import multi_gpu_test, single_gpu_test from mmcls.datasets import build_dataloader, build_dataset from mmcls.utils import collect_env, get_root_logger from mmcv import DictAction from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import init_dist, load_checkpoint from mmrazor.core import build_searcher from mmrazor.models import build_algorithm from mmrazor.utils import setup_multi_processes # TODO import `wrap_fp16_model` from mmcv and delete them from mmcls try: from mmcv.runner import wrap_fp16_model except ImportError: warnings.warn('wrap_fp16_model from mmcls will be deprecated.' 'Please install mmcv>=1.1.4.') from mmcls.core import wrap_fp16_model def parse_args(): parser = argparse.ArgumentParser( description='MMClsArchitecture search subnet') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--work-dir', help='working direction is ' 'to save search result and log') parser.add_argument( '--resume-from', type=str, help='the checkpoint file to resume from') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument( '--device', choices=['cpu', 'cuda'], default='cuda', help='device used for testing') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set multi-process settings setup_multi_processes(cfg) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # build the dataloader dataset = build_dataset(cfg.data.test) # the extra round_up data will be removed during gpu/cpu collect data_loader = build_dataloader( dataset, samples_per_gpu=cfg.data.samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False, round_up=True) # build the algorithm and load checkpoint algorithm = build_algorithm(cfg.algorithm) model = algorithm.architecture.model fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint( algorithm, args.checkpoint, map_location='cpu') if 'CLASSES' in checkpoint.get('meta', {}): CLASSES = checkpoint['meta']['CLASSES'] else: from mmcls.datasets import ImageNet warnings.simplefilter('once') warnings.warn('Class names are not saved in the checkpoint\'s ' 'meta data, use imagenet by default.') CLASSES = ImageNet.CLASSES if not distributed: if args.device == 'cpu': algorithm = algorithm.cpu() else: algorithm = MMDataParallel(algorithm, device_ids=[0]) model.CLASSES = CLASSES test_fn = single_gpu_test else: algorithm = MMDistributedDataParallel( algorithm.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) test_fn = multi_gpu_test logger.info('build search...') searcher = build_searcher( cfg.searcher, default_args=dict( algorithm=algorithm, dataloader=data_loader, test_fn=test_fn, work_dir=cfg.work_dir, logger=logger, resume_from=args.resume_from)) logger.info('start search...') searcher.search() if __name__ == '__main__': main()