# dataset settings dataset_type = 'CIFAR100' img_norm_cfg = dict( mean=[129.304, 124.070, 112.434], std=[68.170, 65.392, 70.418], to_rgb=False) train_pipeline = [ dict(type='RandomCrop', size=32, padding=4), dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label']), dict(type='Collect', keys=['img', 'gt_label']) ] test_pipeline = [ dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ] data = dict( samples_per_gpu=16, workers_per_gpu=2, train=dict( type=dataset_type, data_prefix='data/cifar100', pipeline=train_pipeline), val=dict( type=dataset_type, data_prefix='data/cifar100', pipeline=test_pipeline, test_mode=True), test=dict( type=dataset_type, data_prefix='data/cifar100', pipeline=test_pipeline, test_mode=True))