Слияние кода завершено, страница обновится автоматически
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import warnings
import mmcv
import numpy as np
import torch
from mmcls.apis import multi_gpu_test, single_gpu_test
from mmcls.datasets import build_dataloader, build_dataset
from mmcv import DictAction
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from mmrazor.models.builder import build_algorithm
# TODO import `wrap_fp16_model` from mmcv and delete them from mmcls
try:
from mmcv.runner import wrap_fp16_model
except ImportError:
warnings.warn('wrap_fp16_model from mmcls will be deprecated.'
'Please install mmcv>=1.1.4.')
from mmcls.core import wrap_fp16_model
def parse_args():
parser = argparse.ArgumentParser(description='mmcls test model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--out', help='output result file')
parser.add_argument(
'--metrics',
type=str,
nargs='+',
help='evaluation metrics, which depends on the dataset, e.g., '
'"accuracy", "precision", "recall", "f1_score", "support" for single '
'label dataset, and "mAP", "CP", "CR", "CF1", "OP", "OR", "OF1" for '
'multi-label dataset')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--gpu_collect',
action='store_true',
help='whether to use gpu to collect results')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--metric-options',
nargs='+',
action=DictAction,
default={},
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be parsed as a dict metric_options for dataset.evaluate()'
' function.')
parser.add_argument(
'--show-options',
nargs='+',
action=DictAction,
help='custom options for show_result. key-value pair in xxx=yyy.'
'Check available options in `model.show_result`.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--device',
choices=['cpu', 'cuda'],
default='cuda',
help='device used for testing')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
cfg = mmcv.Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
assert args.metrics or args.out, \
'Please specify at least one of output path and evaluation metrics.'
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# build the dataloader
dataset = build_dataset(cfg.data.test)
# the extra round_up data will be removed during gpu/cpu collect
data_loader = build_dataloader(
dataset,
samples_per_gpu=cfg.data.samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False,
round_up=True)
# build the model and load checkpoint
model = build_algorithm(cfg.algorithm)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
if 'CLASSES' in checkpoint.get('meta', {}):
CLASSES = checkpoint['meta']['CLASSES']
else:
from mmcls.datasets import ImageNet
warnings.simplefilter('once')
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use imagenet by default.')
CLASSES = ImageNet.CLASSES
if not distributed:
if args.device == 'cpu':
model = model.cpu()
else:
model = MMDataParallel(model, device_ids=[0])
model.CLASSES = CLASSES
show_kwargs = {} if args.show_options is None else args.show_options
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
**show_kwargs)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
args.gpu_collect)
rank, _ = get_dist_info()
if rank == 0:
results = {}
if args.metrics:
eval_results = dataset.evaluate(outputs, args.metrics,
args.metric_options)
results.update(eval_results)
for k, v in eval_results.items():
print(f'\n{k} : {v:.2f}')
if args.out:
scores = np.vstack(outputs)
pred_score = np.max(scores, axis=1)
pred_label = np.argmax(scores, axis=1)
pred_class = [CLASSES[lb] for lb in pred_label]
results.update({
'class_scores': scores,
'pred_score': pred_score,
'pred_label': pred_label,
'pred_class': pred_class
})
print(f'\ndumping results to {args.out}')
mmcv.dump(results, args.out)
if __name__ == '__main__':
main()
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Комментарий ( 0 )