/* * The MIT License (MIT) * * Copyright (c) 2021 Koji Kitayama * Portions copyrighted (c) 2021 Roland Winistoerfer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUH_ENABLED && defined(TUP_USBIP_RUSB2) #include "hcd.h" #include "rusb2_type.h" #if TU_CHECK_MCU(OPT_MCU_RX63X, OPT_MCU_RX65X, OPT_MCU_RX72N) #include "rusb2_rx.h" #elif TU_CHECK_MCU(OPT_MCU_RAXXX) #include "rusb2_ra.h" #else #error "Unsupported MCU" #endif #define TU_RUSB2_HCD_DBG 2 //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ enum { PIPE_COUNT = 10, }; TU_ATTR_PACKED_BEGIN TU_ATTR_BIT_FIELD_ORDER_BEGIN typedef union TU_ATTR_PACKED { struct { volatile uint16_t u8: 8; volatile uint16_t : 0; }; volatile uint16_t u16; } hw_fifo_t; typedef struct TU_ATTR_PACKED { void *buf; /* the start address of a transfer data buffer */ uint16_t length; /* the number of bytes in the buffer */ uint16_t remaining; /* the number of bytes remaining in the buffer */ struct { uint32_t ep : 8; /* an assigned endpoint address */ uint32_t dev : 8; /* an assigned device address */ uint32_t ff : 1; /* `buf` is TU_FUFO or POD */ uint32_t : 0; }; } pipe_state_t; TU_ATTR_PACKED_END // End of definition of packed structs (used by the CCRX toolchain) TU_ATTR_BIT_FIELD_ORDER_END typedef struct { bool need_reset; /* The device has not been reset after connection. */ pipe_state_t pipe[PIPE_COUNT]; uint8_t ep[4][2][15]; /* a lookup table for a pipe index from an endpoint address */ uint8_t ctl_mps[5]; /* EP0 max packet size for each device */ } hcd_data_t; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static hcd_data_t _hcd; // TODO merged with DCD // Transfer conditions specifiable for each pipe for most MCUs // - Pipe 0: Control transfer with 64-byte single buffer // - Pipes 1 and 2: Bulk or ISO // - Pipes 3 to 5: Bulk // - Pipes 6 to 9: Interrupt // // Note: for small mcu such as // - RA2A1: only pipe 4-7 are available, and no support for ISO static unsigned find_pipe(unsigned xfer_type) { const uint8_t pipe_idx_arr[4][2] = { { 0, 0 }, // Control { 1, 2 }, // Isochronous { 1, 5 }, // Bulk { 6, 9 }, // Interrupt }; // find backward since only pipe 1, 2 support ISO const uint8_t idx_first = pipe_idx_arr[xfer_type][0]; const uint8_t idx_last = pipe_idx_arr[xfer_type][1]; for (int i = idx_last; i >= idx_first; i--) { if (0 == _hcd.pipe[i].ep) return i; } return 0; } static volatile uint16_t* get_pipectr(rusb2_reg_t *rusb, unsigned num) { if (num) { return (volatile uint16_t*)&(rusb->PIPE_CTR[num - 1]); } else { return (volatile uint16_t*)&(rusb->DCPCTR); } } static volatile reg_pipetre_t* get_pipetre(rusb2_reg_t *rusb, unsigned num) { volatile reg_pipetre_t* tre = NULL; if ((1 <= num) && (num <= 5)) { tre = (volatile reg_pipetre_t*)&(rusb->PIPE_TR[num - 1].E); } return tre; } static volatile uint16_t* addr_to_pipectr(uint8_t rhport, uint8_t dev_addr, unsigned ep_addr) { rusb2_reg_t* rusb = RUSB2_REG(rhport); const unsigned epn = tu_edpt_number(ep_addr); if (epn) { const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned num = _hcd.ep[dev_addr][dir_in][epn - 1]; return get_pipectr(rusb, num); } else { return get_pipectr(rusb, 0); } } static uint16_t edpt0_max_packet_size(rusb2_reg_t* rusb) { return rusb->DCPMAXP_b.MXPS; } static uint16_t edpt_max_packet_size(rusb2_reg_t *rusb, unsigned num) { rusb->PIPESEL = num; return rusb->PIPEMAXP_b.MXPS; } static inline void pipe_wait_for_ready(rusb2_reg_t* rusb, unsigned num) { while (rusb->D0FIFOSEL_b.CURPIPE != num) ; while (!rusb->D0FIFOCTR_b.FRDY) {} } static void pipe_write_packet(void *buf, volatile void *fifo, unsigned len) { // NOTE: unlike DCD, Highspeed 32-bit FIFO does not need to adjust the fifo address volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo; uintptr_t addr = (uintptr_t)buf; while (len >= 2) { reg->u16 = *(const uint16_t *)addr; addr += 2; len -= 2; } if (len) { reg->u8 = *(const uint8_t *)addr; ++addr; } } static void pipe_read_packet(void *buf, volatile void *fifo, unsigned len) { uint8_t *p = (uint8_t*)buf; volatile uint8_t *reg = (volatile uint8_t*)fifo; /* byte access is always at base register address */ while (len--) *p++ = *reg; } static bool pipe0_xfer_in(rusb2_reg_t* rusb) { pipe_state_t *pipe = &_hcd.pipe[0]; const unsigned rem = pipe->remaining; const unsigned mps = edpt0_max_packet_size(rusb); const unsigned vld = rusb->CFIFOCTR_b.DTLN; const unsigned len = TU_MIN(TU_MIN(rem, mps), vld); void *buf = pipe->buf; if (len) { rusb->DCPCTR = RUSB2_PIPE_CTR_PID_NAK; pipe_read_packet(buf, (volatile void*)&rusb->CFIFO, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) { rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; } pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return true; } rusb->DCPCTR = RUSB2_PIPE_CTR_PID_BUF; return false; } static bool pipe0_xfer_out(rusb2_reg_t* rusb) { pipe_state_t *pipe = &_hcd.pipe[0]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } const unsigned mps = edpt0_max_packet_size(rusb); const unsigned len = TU_MIN(mps, rem); void *buf = pipe->buf; if (len) { pipe_write_packet(buf, (volatile void*)&rusb->CFIFO, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) { rusb->CFIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk; } pipe->remaining = rem - len; return false; } static bool pipe_xfer_in(rusb2_reg_t* rusb, unsigned num) { pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned rem = pipe->remaining; rusb->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_8BIT; const unsigned mps = edpt_max_packet_size(rusb, num); pipe_wait_for_ready(rusb, num); const unsigned vld = rusb->D0FIFOCTR_b.DTLN; const unsigned len = TU_MIN(TU_MIN(rem, mps), vld); void *buf = pipe->buf; if (len) { pipe_read_packet(buf, (volatile void*)&rusb->D0FIFO, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) { rusb->D0FIFOCTR = RUSB2_D0FIFOCTR_BCLR_Msk; } rusb->D0FIFOSEL = 0; while (rusb->D0FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return NULL != buf; } return false; } static bool pipe_xfer_out(rusb2_reg_t* rusb, unsigned num) { pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } rusb->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0); const unsigned mps = edpt_max_packet_size(rusb, num); pipe_wait_for_ready(rusb, num); const unsigned len = TU_MIN(rem, mps); void *buf = pipe->buf; if (len) { pipe_write_packet(buf, (volatile void*)&rusb->D0FIFO, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) { rusb->D0FIFOCTR = RUSB2_D0FIFOCTR_BVAL_Msk; } rusb->D0FIFOSEL = 0; while (rusb->D0FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; return false; } static bool process_pipe0_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen) { (void)dev_addr; rusb2_reg_t* rusb = RUSB2_REG(rhport); const unsigned dir_in = tu_edpt_dir(ep_addr); /* configure fifo direction and access unit settings */ if (dir_in) { /* IN, a byte */ rusb->CFIFOSEL = RUSB2_FIFOSEL_MBW_8BIT; while (rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) ; } else { /* OUT, 2 bytes */ rusb->CFIFOSEL = RUSB2_CFIFOSEL_ISEL_WRITE | RUSB2_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0); while (!(rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE)) ; } pipe_state_t *pipe = &_hcd.pipe[0]; pipe->ep = ep_addr; pipe->length = buflen; pipe->remaining = buflen; if (buflen) { pipe->buf = buffer; if (!dir_in) { /* OUT */ TU_ASSERT(rusb->DCPCTR_b.BSTS && (rusb->USBREQ & 0x80)); pipe0_xfer_out(rusb); } } else { /* ZLP */ pipe->buf = NULL; if (!dir_in) { /* OUT */ rusb->CFIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk; } if (dir_in == rusb->DCPCFG_b.DIR) { TU_ASSERT(RUSB2_PIPE_CTR_PID_NAK == rusb->DCPCTR_b.PID); rusb->DCPCTR_b.SQSET = 1; rusb->DCPCFG_b.DIR = dir_in ^ 1; } } rusb->DCPCTR = RUSB2_PIPE_CTR_PID_BUF; return true; } static bool process_pipe_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, void *buffer, uint16_t buflen) { rusb2_reg_t* rusb = RUSB2_REG(rhport); const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned num = _hcd.ep[dev_addr - 1][dir_in][epn - 1]; TU_ASSERT(num); pipe_state_t *pipe = &_hcd.pipe[num]; pipe->buf = buffer; pipe->length = buflen; pipe->remaining = buflen; if (!dir_in) { /* OUT */ if (buflen) { pipe_xfer_out(rusb, num); } else { /* ZLP */ rusb->D0FIFOSEL = num; pipe_wait_for_ready(rusb, num); rusb->D0FIFOCTR = RUSB2_D0FIFOCTR_BVAL_Msk; rusb->D0FIFOSEL = 0; while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */ } } else { volatile uint16_t *ctr = get_pipectr(rusb, num); volatile reg_pipetre_t *pt = get_pipetre(rusb, num); if (pt) { const unsigned mps = edpt_max_packet_size(rusb, num); if (*ctr & 0x3) *ctr = RUSB2_PIPE_CTR_PID_NAK; pt->TRE = TU_BIT(8); pt->TRN = (buflen + mps - 1) / mps; pt->TRENB = 1; } *ctr = RUSB2_PIPE_CTR_PID_BUF; } return true; } static bool process_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen) { const unsigned epn = tu_edpt_number(ep_addr); if (0 == epn) { return process_pipe0_xfer(rhport, dev_addr, ep_addr, buffer, buflen); } else { return process_pipe_xfer(rhport, dev_addr, ep_addr, buffer, buflen); } } static void process_pipe0_bemp(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); bool completed = pipe0_xfer_out(rusb); if (completed) { pipe_state_t *pipe = &_hcd.pipe[0]; hcd_event_xfer_complete(pipe->dev, tu_edpt_addr(0, TUSB_DIR_OUT), pipe->length - pipe->remaining, XFER_RESULT_SUCCESS, true); } } static void process_pipe_nrdy(uint8_t rhport, unsigned num) { rusb2_reg_t* rusb = RUSB2_REG(rhport); xfer_result_t result; uint16_t volatile *ctr = get_pipectr(rusb, num); TU_LOG(TU_RUSB2_HCD_DBG, "NRDY %d %x\r\n", num, *ctr); switch (*ctr & RUSB2_PIPE_CTR_PID_Msk) { default: return; case RUSB2_PIPE_CTR_PID_STALL: result = XFER_RESULT_STALLED; break; case RUSB2_PIPE_CTR_PID_STALL2: result = XFER_RESULT_STALLED; break; case RUSB2_PIPE_CTR_PID_NAK: result = XFER_RESULT_FAILED; break; } pipe_state_t *pipe = &_hcd.pipe[num]; hcd_event_xfer_complete(pipe->dev, pipe->ep, pipe->length - pipe->remaining, result, true); } static void process_pipe_brdy(uint8_t rhport, unsigned num) { rusb2_reg_t* rusb = RUSB2_REG(rhport); pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned dir_in = tu_edpt_dir(pipe->ep); bool completed; if (dir_in) { /* IN */ if (num) { completed = pipe_xfer_in(rusb, num); } else { completed = pipe0_xfer_in(rusb); } } else { completed = pipe_xfer_out(rusb, num); } if (completed) { hcd_event_xfer_complete(pipe->dev, pipe->ep, pipe->length - pipe->remaining, XFER_RESULT_SUCCESS, true); TU_LOG(TU_RUSB2_HCD_DBG, "C %d %d\r\n", num, pipe->length - pipe->remaining); } } /*------------------------------------------------------------------*/ /* Host API *------------------------------------------------------------------*/ #if 0 // previously present in the rx driver before generalization static uint32_t disable_interrupt(void) { uint32_t pswi; #if defined(__CCRX__) pswi = get_psw() & 0x010000; clrpsw_i(); #else pswi = __builtin_rx_mvfc(0) & 0x010000; __builtin_rx_clrpsw('I'); #endif return pswi; } static void enable_interrupt(uint32_t pswi) { #if defined(__CCRX__) set_psw(get_psw() | pswi); #else __builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi); #endif } #endif bool hcd_init(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); rusb2_module_start(rhport, true); #ifdef RUSB2_SUPPORT_HIGHSPEED if (rusb2_is_highspeed_rhport(rhport) ) { rusb->SYSCFG_b.HSE = 1; rusb->PHYSET_b.HSEB = 0; rusb->PHYSET_b.DIRPD = 0; R_BSP_SoftwareDelay((uint32_t) 1, BSP_DELAY_UNITS_MILLISECONDS); rusb->PHYSET_b.PLLRESET = 0; rusb->LPSTS_b.SUSPENDM = 1; while ( !rusb->PLLSTA_b.PLLLOCK ); rusb->SYSCFG_b.DRPD = 1; rusb->SYSCFG_b.DCFM = 1; rusb->SYSCFG_b.DPRPU = 0; rusb->SYSCFG_b.CNEN = 1; rusb->BUSWAIT |= 0x0F00U; rusb->SOFCFG_b.INTL = 1; rusb->DVSTCTR0_b.VBUSEN = 1; rusb->CFIFOSEL_b.MBW = 1; rusb->D0FIFOSEL_b.MBW = 1; rusb->D1FIFOSEL_b.MBW = 1; rusb->INTSTS0 = 0; for ( volatile int i = 0; i < 30000; ++i ); rusb->SYSCFG_b.USBE = 1; } else #endif { rusb->SYSCFG_b.SCKE = 1; while ( !rusb->SYSCFG_b.SCKE ) {} rusb->SYSCFG_b.DCFM = 1; // Host function rusb->SYSCFG_b.DPRPU = 0; // Disable D+ pull up rusb->SYSCFG_b.DRPD = 1; // Enable D+/D- pull down rusb->DVSTCTR0_b.VBUSEN = 1; for ( volatile int i = 0; i < 30000; ++i ) {} // FIXME do we need to wait here? how long ? //R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS); rusb->SYSCFG_b.USBE = 1; // MCU specific PHY init rusb2_phy_init(); rusb->PHYSLEW = 0x5; rusb->DPUSR0R_FS_b.FIXPHY0 = 0u; /* Transceiver Output fixed */ } /* Setup default control pipe */ rusb->DCPCFG = RUSB2_PIPECFG_SHTNAK_Msk; rusb->DCPMAXP = 64; rusb->INTENB0 = RUSB2_INTSTS0_BRDY_Msk | RUSB2_INTSTS0_NRDY_Msk | RUSB2_INTSTS0_BEMP_Msk; rusb->INTENB1 = RUSB2_INTSTS1_SACK_Msk | RUSB2_INTSTS1_SIGN_Msk | RUSB2_INTSTS1_ATTCH_Msk | RUSB2_INTSTS1_DTCH_Msk; rusb->BEMPENB = 1; rusb->NRDYENB = 1; rusb->BRDYENB = 1; return true; } void hcd_int_enable(uint8_t rhport) { rusb2_int_enable(rhport); } void hcd_int_disable(uint8_t rhport) { rusb2_int_disable(rhport); } uint32_t hcd_frame_number(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); /* The device must be reset at least once after connection * in order to start the frame counter. */ if (_hcd.need_reset) hcd_port_reset(rhport); return rusb->FRMNUM_b.FRNM; } /*--------------------------------------------------------------------+ * Port API *--------------------------------------------------------------------+*/ bool hcd_port_connect_status(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); return rusb->INTSTS1_b.ATTCH ? true : false; } void hcd_port_reset(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); rusb->DCPCTR = RUSB2_PIPE_CTR_PID_NAK; while (rusb->DCPCTR_b.PBUSY) {} hcd_int_disable(rhport); rusb->DVSTCTR0_b.UACT = 0; if (rusb->DCPCTR_b.SUREQ) { rusb->DCPCTR_b.SUREQCLR = 1; } hcd_int_enable(rhport); /* Reset should be asserted 10-20ms. */ rusb->DVSTCTR0_b.USBRST = 1; for (volatile int i = 0; i < 2400000; ++i) {} rusb->DVSTCTR0_b.USBRST = 0; rusb->DVSTCTR0_b.UACT = 1; _hcd.need_reset = false; } void hcd_port_reset_end(uint8_t rhport) { (void) rhport; } tusb_speed_t hcd_port_speed_get(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); switch (rusb->DVSTCTR0_b.RHST) { case RUSB2_DVSTCTR0_RHST_HS: return TUSB_SPEED_HIGH; case RUSB2_DVSTCTR0_RHST_FS: return TUSB_SPEED_FULL; case RUSB2_DVSTCTR0_RHST_LS: return TUSB_SPEED_LOW; default: return TUSB_SPEED_INVALID; } } void hcd_device_close(uint8_t rhport, uint8_t dev_addr) { rusb2_reg_t* rusb = RUSB2_REG(rhport); uint16_t volatile *ctr; TU_ASSERT(dev_addr < 6,); /* USBa can only handle addresses from 0 to 5. */ if (!dev_addr) return; _hcd.ctl_mps[dev_addr] = 0; uint8_t *ep = &_hcd.ep[dev_addr - 1][0][0]; for (int i = 0; i < 2 * 15; ++i, ++ep) { unsigned num = *ep; if (!num || (dev_addr != _hcd.pipe[num].dev)) continue; ctr = (uint16_t volatile*)&rusb->PIPE_CTR[num - 1]; *ctr = 0; rusb->NRDYENB &= ~TU_BIT(num); rusb->BRDYENB &= ~TU_BIT(num); rusb->PIPESEL = num; rusb->PIPECFG = 0; rusb->PIPEMAXP = 0; _hcd.pipe[num].ep = 0; _hcd.pipe[num].dev = 0; *ep = 0; } } /*--------------------------------------------------------------------+ * Endpoints API *--------------------------------------------------------------------+*/ bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8]) { TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */ rusb2_reg_t* rusb = RUSB2_REG(rhport); TU_LOG(TU_RUSB2_HCD_DBG, "S %d %x\r\n", dev_addr, rusb->DCPCTR); TU_ASSERT(0 == rusb->DCPCTR_b.SUREQ); rusb->DCPCTR = RUSB2_PIPE_CTR_PID_NAK; _hcd.pipe[0].buf = NULL; _hcd.pipe[0].length = 8; _hcd.pipe[0].remaining = 0; _hcd.pipe[0].dev = dev_addr; while (rusb->DCPCTR_b.PBUSY) ; rusb->DCPMAXP = (dev_addr << 12) | _hcd.ctl_mps[dev_addr]; /* Set direction in advance for DATA stage */ uint8_t const bmRequesttype = setup_packet[0]; rusb->DCPCFG_b.DIR = tu_edpt_dir(bmRequesttype) ? 0: 1; uint16_t const* p = (uint16_t const*)(uintptr_t)&setup_packet[0]; rusb->USBREQ = tu_htole16(p[0]); rusb->USBVAL = p[1]; rusb->USBINDX = p[2]; rusb->USBLENG = p[3]; rusb->DCPCTR_b.SUREQ = 1; return true; } bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const *ep_desc) { TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */ rusb2_reg_t* rusb = RUSB2_REG(rhport); const unsigned ep_addr = ep_desc->bEndpointAddress; const unsigned epn = tu_edpt_number(ep_addr); const unsigned mps = tu_edpt_packet_size(ep_desc); if (0 == epn) { rusb->DCPCTR = RUSB2_PIPE_CTR_PID_NAK; hcd_devtree_info_t devtree; hcd_devtree_get_info(dev_addr, &devtree); uint16_t volatile *devadd = (uint16_t volatile *)(uintptr_t) &rusb->DEVADD[0]; devadd += dev_addr; while (rusb->DCPCTR_b.PBUSY) {} rusb->DCPMAXP = (dev_addr << 12) | mps; *devadd = (TUSB_SPEED_FULL == devtree.speed) ? RUSB2_DEVADD_USBSPD_FS : RUSB2_DEVADD_USBSPD_LS; _hcd.ctl_mps[dev_addr] = mps; return true; } const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned xfer = ep_desc->bmAttributes.xfer; if (xfer == TUSB_XFER_ISOCHRONOUS && mps > 256) { /* USBa supports up to 256 bytes */ return false; } const unsigned num = find_pipe(xfer); if (!num) return false; _hcd.pipe[num].dev = dev_addr; _hcd.pipe[num].ep = ep_addr; _hcd.ep[dev_addr - 1][dir_in][epn - 1] = num; /* setup pipe */ hcd_int_disable(rhport); rusb->PIPESEL = num; rusb->PIPEMAXP = (dev_addr << 12) | mps; volatile uint16_t *ctr = get_pipectr(rusb, num); *ctr = RUSB2_PIPE_CTR_ACLRM_Msk | RUSB2_PIPE_CTR_SQCLR_Msk; *ctr = 0; unsigned cfg = ((1 ^ dir_in) << 4) | epn; if (xfer == TUSB_XFER_BULK) { cfg |= RUSB2_PIPECFG_TYPE_BULK | RUSB2_PIPECFG_SHTNAK_Msk | RUSB2_PIPECFG_DBLB_Msk; } else if (xfer == TUSB_XFER_INTERRUPT) { cfg |= RUSB2_PIPECFG_TYPE_INT; } else { cfg |= RUSB2_PIPECFG_TYPE_ISO | RUSB2_PIPECFG_DBLB_Msk; } rusb->PIPECFG = cfg; rusb->BRDYSTS = 0x3FFu ^ TU_BIT(num); rusb->NRDYENB |= TU_BIT(num); rusb->BRDYENB |= TU_BIT(num); if (!dir_in) { *ctr = RUSB2_PIPE_CTR_PID_BUF; } hcd_int_enable(rhport); return true; } bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *buffer, uint16_t buflen) { bool r; hcd_int_disable(rhport); TU_LOG(TU_RUSB2_HCD_DBG, "X %d %x %u\r\n", dev_addr, ep_addr, buflen); r = process_edpt_xfer(rhport, dev_addr, ep_addr, buffer, buflen); hcd_int_enable(rhport); return r; } bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) { (void) rhport; (void) dev_addr; (void) ep_addr; // TODO not implemented yet return false; } bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) { uint16_t volatile *ctr = addr_to_pipectr(rhport, dev_addr, ep_addr); TU_ASSERT(ctr); const uint32_t pid = *ctr & 0x3; if (pid & 2) { *ctr = pid & 2; *ctr = 0; } *ctr = RUSB2_PIPE_CTR_SQCLR_Msk; unsigned const epn = tu_edpt_number(ep_addr); if (!epn) return true; if (!tu_edpt_dir(ep_addr)) { /* OUT */ *ctr = RUSB2_PIPE_CTR_PID_BUF; } return true; } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ #if defined(__CCRX__) TU_ATTR_ALWAYS_INLINE static inline unsigned __builtin_ctz(unsigned int value) { unsigned int count = 0; while ((value & 1) == 0) { value >>= 1; count++; } return count; } #endif void hcd_int_handler(uint8_t rhport, bool in_isr) { (void) in_isr; rusb2_reg_t* rusb = RUSB2_REG(rhport); unsigned is0 = rusb->INTSTS0; unsigned is1 = rusb->INTSTS1; /* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */ rusb->INTSTS1 = ~((RUSB2_INTSTS1_SACK_Msk | RUSB2_INTSTS1_SIGN_Msk | RUSB2_INTSTS1_ATTCH_Msk | RUSB2_INTSTS1_DTCH_Msk) & is1); rusb->INTSTS0 = ~((RUSB2_INTSTS0_BRDY_Msk | RUSB2_INTSTS0_NRDY_Msk | RUSB2_INTSTS0_BEMP_Msk) & is0); TU_LOG3("IS %04x %04x\r\n", is0, is1); is1 &= rusb->INTENB1; is0 &= rusb->INTENB0; if (is1 & RUSB2_INTSTS1_SACK_Msk) { /* Set DATA1 in advance for the next transfer. */ rusb->DCPCTR_b.SQSET = 1; hcd_event_xfer_complete(rusb->DCPMAXP_b.DEVSEL, tu_edpt_addr(0, TUSB_DIR_OUT), 8, XFER_RESULT_SUCCESS, true); } if (is1 & RUSB2_INTSTS1_SIGN_Msk) { hcd_event_xfer_complete(rusb->DCPMAXP_b.DEVSEL, tu_edpt_addr(0, TUSB_DIR_OUT), 8, XFER_RESULT_FAILED, true); } if (is1 & RUSB2_INTSTS1_ATTCH_Msk) { rusb->DVSTCTR0_b.UACT = 1; _hcd.need_reset = true; rusb->INTENB1 = (rusb->INTENB1 & ~RUSB2_INTSTS1_ATTCH_Msk) | RUSB2_INTSTS1_DTCH_Msk; hcd_event_device_attach(rhport, true); } if (is1 & RUSB2_INTSTS1_DTCH_Msk) { rusb->DVSTCTR0_b.UACT = 0; if (rusb->DCPCTR_b.SUREQ) { rusb->DCPCTR_b.SUREQCLR = 1; } rusb->INTENB1 = (rusb->INTENB1 & ~RUSB2_INTSTS1_DTCH_Msk) | RUSB2_INTSTS1_ATTCH_Msk; hcd_event_device_remove(rhport, true); } if (is0 & RUSB2_INTSTS0_BEMP_Msk) { const unsigned s = rusb->BEMPSTS; rusb->BEMPSTS = 0; if (s & 1) { process_pipe0_bemp(rhport); } } if (is0 & RUSB2_INTSTS0_NRDY_Msk) { const unsigned m = rusb->NRDYENB; unsigned s = rusb->NRDYSTS & m; rusb->NRDYSTS = ~s; while (s) { const unsigned num = __builtin_ctz(s); process_pipe_nrdy(rhport, num); s &= ~TU_BIT(num); } } if (is0 & RUSB2_INTSTS0_BRDY_Msk) { const unsigned m = rusb->BRDYENB; unsigned s = rusb->BRDYSTS & m; /* clear active bits (don't write 0 to already cleared bits according to the HW manual) */ rusb->BRDYSTS = ~s; while (s) { const unsigned num = __builtin_ctz(s); process_pipe_brdy(rhport, num); s &= ~TU_BIT(num); } } } #endif