1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/notrynohigh-BabyOS

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
dcd_dwc2.c 40 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
notrynohigh Отправлено год назад 73bc233
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 William D. Jones
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Jan Duempelmann
* Copyright (c) 2020 Reinhard Panhuber
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && defined(TUP_USBIP_DWC2)
#include "dcd.h"
#include "dwc2_type.h"
// Following symbols must be defined by port header
// - _dwc2_controller[]: array of controllers
// - DWC2_EP_MAX: largest EP counts of all controllers
// - dwc2_phy_init/dwc2_phy_update: phy init called before and after core reset
// - dwc2_dcd_int_enable/dwc2_dcd_int_disable
// - dwc2_remote_wakeup_delay
#if defined(TUP_USBIP_DWC2_STM32)
#include "dwc2_stm32.h"
#elif TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3)
#include "dwc2_esp32.h"
#elif TU_CHECK_MCU(OPT_MCU_GD32VF103)
#include "dwc2_gd32.h"
#elif TU_CHECK_MCU(OPT_MCU_BCM2711, OPT_MCU_BCM2835, OPT_MCU_BCM2837)
#include "dwc2_bcm.h"
#elif TU_CHECK_MCU(OPT_MCU_EFM32GG)
#include "dwc2_efm32.h"
#elif TU_CHECK_MCU(OPT_MCU_XMC4000)
#include "dwc2_xmc.h"
#else
#error "Unsupported MCUs"
#endif
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
// DWC2 registers
#define DWC2_REG(_port) ((dwc2_regs_t*) _dwc2_controller[_port].reg_base)
// Debug level for DWC2
#define DWC2_DEBUG 2
#ifndef dcache_clean
#define dcache_clean(_addr, _size)
#endif
#ifndef dcache_invalidate
#define dcache_invalidate(_addr, _size)
#endif
#ifndef dcache_clean_invalidate
#define dcache_clean_invalidate(_addr, _size)
#endif
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];
typedef struct {
uint8_t* buffer;
tu_fifo_t* ff;
uint16_t total_len;
uint16_t max_size;
uint8_t interval;
} xfer_ctl_t;
static xfer_ctl_t xfer_status[DWC2_EP_MAX][2];
#define XFER_CTL_BASE(_ep, _dir) (&xfer_status[_ep][_dir])
// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
// TX FIFO RAM allocation so far in words - RX FIFO size is readily available from dwc2->grxfsiz
static uint16_t _allocated_fifo_words_tx; // TX FIFO size in words (IN EPs)
// SOF enabling flag - required for SOF to not get disabled in ISR when SOF was enabled by
static bool _sof_en;
// Calculate the RX FIFO size according to minimum recommendations from reference manual
// RxFIFO = (5 * number of control endpoints + 8) +
// ((largest USB packet used / 4) + 1 for status information) +
// (2 * number of OUT endpoints) + 1 for Global NAK
// with number of control endpoints = 1 we have
// RxFIFO = 15 + (largest USB packet used / 4) + 2 * number of OUT endpoints
// we double the largest USB packet size to be able to hold up to 2 packets
static inline uint16_t calc_grxfsiz(uint16_t max_ep_size, uint8_t ep_count) {
return 15 + 2 * (max_ep_size / 4) + 2 * ep_count;
}
TU_ATTR_ALWAYS_INLINE static inline void fifo_flush_tx(dwc2_regs_t* dwc2, uint8_t epnum) {
// flush TX fifo and wait for it cleared
dwc2->grstctl = GRSTCTL_TXFFLSH | (epnum << GRSTCTL_TXFNUM_Pos);
while (dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) {}
}
TU_ATTR_ALWAYS_INLINE static inline void fifo_flush_rx(dwc2_regs_t* dwc2) {
// flush RX fifo and wait for it cleared
dwc2->grstctl = GRSTCTL_RXFFLSH;
while (dwc2->grstctl & GRSTCTL_RXFFLSH_Msk) {}
}
static bool fifo_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t packet_size) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_ASSERT(epnum < ep_count);
uint16_t fifo_size = tu_div_ceil(packet_size, 4);
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO 0 |
// --------------- (320 or 1024) - 16
// | IN FIFO 1 |
// --------------- (320 or 1024) - 16 - x
// | . . . . |
// --------------- (320 or 1024) - 16 - x - y - ... - z
// | IN FIFO MAX |
// ---------------
// | FREE |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
// --------------- 0
//
// In FIFO is allocated by following rules:
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
if (dir == TUSB_DIR_OUT) {
// Calculate required size of RX FIFO
uint16_t const sz = calc_grxfsiz(4 * fifo_size, ep_count);
// If size_rx needs to be extended check if possible and if so enlarge it
if (dwc2->grxfsiz < sz) {
TU_ASSERT(sz + _allocated_fifo_words_tx <= _dwc2_controller[rhport].ep_fifo_size / 4);
// Enlarge RX FIFO
dwc2->grxfsiz = sz;
}
} else {
// Note if The TXFELVL is configured as half empty. In order
// to be able to write a packet at that point, the fifo must be twice the max_size.
if ((dwc2->gahbcfg & GAHBCFG_TXFELVL) == 0) {
fifo_size *= 2;
}
// Check if free space is available
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + dwc2->grxfsiz <= _dwc2_controller[rhport].ep_fifo_size / 4);
_allocated_fifo_words_tx += fifo_size;
TU_LOG(DWC2_DEBUG, " Allocated %u bytes at offset %lu", fifo_size * 4,
_dwc2_controller[rhport].ep_fifo_size - _allocated_fifo_words_tx * 4);
// DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words.
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) |
(_dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx);
}
return true;
}
static void edpt_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = tu_edpt_packet_size(p_endpoint_desc);
xfer->interval = p_endpoint_desc->bInterval;
// USBAEP, EPTYP, SD0PID_SEVNFRM, MPSIZ are the same for IN and OUT endpoints.
uint32_t const dxepctl = (1 << DOEPCTL_USBAEP_Pos) |
(p_endpoint_desc->bmAttributes.xfer << DOEPCTL_EPTYP_Pos) |
(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DOEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DOEPCTL_MPSIZ_Pos);
if (dir == TUSB_DIR_OUT) {
dwc2->epout[epnum].doepctl |= dxepctl;
dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum);
} else {
dwc2->epin[epnum].diepctl |= dxepctl | (epnum << DIEPCTL_TXFNUM_Pos);
dwc2->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum));
}
}
static void edpt_disable(uint8_t rhport, uint8_t ep_addr, bool stall) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_IN) {
dwc2_epin_t* epin = dwc2->epin;
// Only disable currently enabled non-control endpoint
if ((epnum == 0) || !(epin[epnum].diepctl & DIEPCTL_EPENA)) {
epin[epnum].diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0);
} else {
// Stop transmitting packets and NAK IN xfers.
epin[epnum].diepctl |= DIEPCTL_SNAK;
while ((epin[epnum].diepint & DIEPINT_INEPNE) == 0) {}
// Disable the endpoint.
epin[epnum].diepctl |= DIEPCTL_EPDIS | (stall ? DIEPCTL_STALL : 0);
while ((epin[epnum].diepint & DIEPINT_EPDISD_Msk) == 0) {}
epin[epnum].diepint = DIEPINT_EPDISD;
}
// Flush the FIFO, and wait until we have confirmed it cleared.
fifo_flush_tx(dwc2, epnum);
} else {
dwc2_epout_t* epout = dwc2->epout;
// Only disable currently enabled non-control endpoint
if ((epnum == 0) || !(epout[epnum].doepctl & DOEPCTL_EPENA)) {
epout[epnum].doepctl |= stall ? DOEPCTL_STALL : 0;
} else {
// Asserting GONAK is required to STALL an OUT endpoint.
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
// anyway, and it can't be cleared by user code. If this while loop never
// finishes, we have bigger problems than just the stack.
dwc2->dctl |= DCTL_SGONAK;
while ((dwc2->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0) {}
// Ditto here- disable the endpoint.
epout[epnum].doepctl |= DOEPCTL_EPDIS | (stall ? DOEPCTL_STALL : 0);
while ((epout[epnum].doepint & DOEPINT_EPDISD_Msk) == 0) {}
epout[epnum].doepint = DOEPINT_EPDISD;
// Allow other OUT endpoints to keep receiving.
dwc2->dctl |= DCTL_CGONAK;
}
}
}
// Start of Bus Reset
static void bus_reset(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
tu_memclr(xfer_status, sizeof(xfer_status));
_sof_en = false;
// clear device address
dwc2->dcfg &= ~DCFG_DAD_Msk;
// 1. NAK for all OUT endpoints
for (uint8_t n = 0; n < ep_count; n++) {
dwc2->epout[n].doepctl |= DOEPCTL_SNAK;
}
fifo_flush_tx(dwc2, 0x10); // all tx fifo
fifo_flush_rx(dwc2);
// 2. Set up interrupt mask
dwc2->daintmsk = TU_BIT(DAINTMSK_OEPM_Pos) | TU_BIT(DAINTMSK_IEPM_Pos);
dwc2->doepmsk = DOEPMSK_STUPM | DOEPMSK_XFRCM;
dwc2->diepmsk = DIEPMSK_TOM | DIEPMSK_XFRCM;
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// The FIFO is split up in a lower part where the RX FIFO is located and an upper part where the TX FIFOs start.
// We do this to allow the RX FIFO to grow dynamically which is possible since the free space is located
// between the RX and TX FIFOs. This is required by ISO OUT EPs which need a bigger FIFO than the standard
// configuration done below.
//
// Dynamically FIFO sizes are of interest only for ISO EPs since all others are usually not opened and closed.
// All EPs other than ISO are opened as soon as the driver starts up i.e. when the host sends a
// configure interface command. Hence, all IN EPs other the ISO will be located at the top. IN ISO EPs are usually
// opened when the host sends an additional command: setInterface. At this point in time
// the ISO EP will be located next to the free space and can change its size. In case more IN EPs change its size
// an additional memory
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO 0 |
// --------------- (320 or 1024) - 16
// | IN FIFO 1 |
// --------------- (320 or 1024) - 16 - x
// | . . . . |
// --------------- (320 or 1024) - 16 - x - y - ... - z
// | IN FIFO MAX |
// ---------------
// | FREE |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
// --------------- 0
//
// According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
// - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
//
// - All EP OUT shared a unique OUT FIFO which uses
// - 13 for setup packets + control words (up to 3 setup packets).
// - 1 for global NAK (not required/used here).
// - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4) + 1"
// - 2 for each used OUT endpoint
//
// Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum
// - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x 16 + 2 x ep_count = 47 + 2 x ep_count
// - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x ep_count = 271 + 2 x ep_count
//
// NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
// of the overall picture yet. We will use the worst scenario: largest possible + ep_count
//
// For Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
// overwrite this.
// EP0 out max is 64
dwc2->grxfsiz = calc_grxfsiz(64, ep_count);
// Setup the control endpoint 0
_allocated_fifo_words_tx = 16;
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
dwc2->dieptxf0 = (16 << DIEPTXF0_TX0FD_Pos) | (_dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx);
// Fixed control EP0 size to 64 bytes
dwc2->epin[0].diepctl &= ~(0x03 << DIEPCTL_MPSIZ_Pos);
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
xfer_status[0][TUSB_DIR_IN].max_size = 64;
dwc2->epout[0].doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT;
}
static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets,
uint16_t total_bytes) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// EP0 is limited to one packet each xfer
// We use multiple transaction of xfer->max_size length to get a whole transfer done
if (epnum == 0) {
xfer_ctl_t* const xfer = XFER_CTL_BASE(epnum, dir);
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
ep0_pending[dir] -= total_bytes;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
if (dir == TUSB_DIR_IN) {
dwc2_epin_t* epin = dwc2->epin;
// A full IN transfer (multiple packets, possibly) triggers XFRC.
epin[epnum].dieptsiz = (num_packets << DIEPTSIZ_PKTCNT_Pos) |
((total_bytes << DIEPTSIZ_XFRSIZ_Pos) & DIEPTSIZ_XFRSIZ_Msk);
epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;
// For ISO endpoint set correct odd/even bit for next frame.
if ((epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) {
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
}
// Enable fifo empty interrupt only if there are something to put in the fifo.
if (total_bytes != 0) {
dwc2->diepempmsk |= (1 << epnum);
}
} else {
dwc2_epout_t* epout = dwc2->epout;
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
epout[epnum].doeptsiz &= ~(DOEPTSIZ_PKTCNT_Msk | DOEPTSIZ_XFRSIZ);
epout[epnum].doeptsiz |= (num_packets << DOEPTSIZ_PKTCNT_Pos) |
((total_bytes << DOEPTSIZ_XFRSIZ_Pos) & DOEPTSIZ_XFRSIZ_Msk);
epout[epnum].doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK;
if ((epout[epnum].doepctl & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 &&
XFER_CTL_BASE(epnum, dir)->interval == 1) {
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
epout[epnum].doepctl |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk);
}
}
}
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
#if CFG_TUSB_DEBUG >= DWC2_DEBUG
void print_dwc2_info(dwc2_regs_t* dwc2) {
// print guid, gsnpsid, ghwcfg1, ghwcfg2, ghwcfg3, ghwcfg4
// use dwc2_info.py/md for bit-field value and comparison with other ports
volatile uint32_t const* p = (volatile uint32_t const*) &dwc2->guid;
TU_LOG(DWC2_DEBUG, "guid, gsnpsid, ghwcfg1, ghwcfg2, ghwcfg3, ghwcfg4\r\n");
for (size_t i = 0; i < 5; i++) {
TU_LOG(DWC2_DEBUG, "0x%08lX, ", p[i]);
}
TU_LOG(DWC2_DEBUG, "0x%08lX\r\n", p[5]);
}
#endif
static void reset_core(dwc2_regs_t* dwc2) {
// reset core
dwc2->grstctl |= GRSTCTL_CSRST;
// wait for reset bit is cleared
// TODO version 4.20a should wait for RESET DONE mask
while (dwc2->grstctl & GRSTCTL_CSRST) {}
// wait for AHB master IDLE
while (!(dwc2->grstctl & GRSTCTL_AHBIDL)) {}
// wait for device mode ?
}
static bool phy_hs_supported(dwc2_regs_t* dwc2) {
// note: esp32 incorrect report its hs_phy_type as utmi
#if TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3)
return false;
#else
return TUD_OPT_HIGH_SPEED && dwc2->ghwcfg2_bm.hs_phy_type != HS_PHY_TYPE_NONE;
#endif
}
static void phy_fs_init(dwc2_regs_t* dwc2) {
TU_LOG(DWC2_DEBUG, "Fullspeed PHY init\r\n");
// Select FS PHY
dwc2->gusbcfg |= GUSBCFG_PHYSEL;
// MCU specific PHY init before reset
dwc2_phy_init(dwc2, HS_PHY_TYPE_NONE);
// Reset core after selecting PHY
reset_core(dwc2);
// USB turnaround time is critical for certification where long cables and 5-Hubs are used.
// So if you need the AHB to run at less than 30 MHz, and if USB turnaround time is not critical,
// these bits can be programmed to a larger value. Default is 5
dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_TRDT_Msk) | (5u << GUSBCFG_TRDT_Pos);
// MCU specific PHY update post reset
dwc2_phy_update(dwc2, HS_PHY_TYPE_NONE);
// set max speed
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DSPD_Msk) | (DCFG_DSPD_FS << DCFG_DSPD_Pos);
}
static void phy_hs_init(dwc2_regs_t* dwc2) {
uint32_t gusbcfg = dwc2->gusbcfg;
// De-select FS PHY
gusbcfg &= ~GUSBCFG_PHYSEL;
if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI) {
TU_LOG(DWC2_DEBUG, "Highspeed ULPI PHY init\r\n");
// Select ULPI
gusbcfg |= GUSBCFG_ULPI_UTMI_SEL;
// ULPI 8-bit interface, single data rate
gusbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
// default internal VBUS Indicator and Drive
gusbcfg &= ~(GUSBCFG_ULPIEVBUSD | GUSBCFG_ULPIEVBUSI);
// Disable FS/LS ULPI
gusbcfg &= ~(GUSBCFG_ULPIFSLS | GUSBCFG_ULPICSM);
} else {
TU_LOG(DWC2_DEBUG, "Highspeed UTMI+ PHY init\r\n");
// Select UTMI+ with 8-bit interface
gusbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
// Set 16-bit interface if supported
if (dwc2->ghwcfg4_bm.utmi_phy_data_width) gusbcfg |= GUSBCFG_PHYIF16;
}
// Apply config
dwc2->gusbcfg = gusbcfg;
// mcu specific phy init
dwc2_phy_init(dwc2, dwc2->ghwcfg2_bm.hs_phy_type);
// Reset core after selecting PHY
reset_core(dwc2);
// Set turn-around, must after core reset otherwise it will be clear
// - 9 if using 8-bit PHY interface
// - 5 if using 16-bit PHY interface
gusbcfg &= ~GUSBCFG_TRDT_Msk;
gusbcfg |= (dwc2->ghwcfg4_bm.utmi_phy_data_width ? 5u : 9u) << GUSBCFG_TRDT_Pos;
dwc2->gusbcfg = gusbcfg;
// MCU specific PHY update post reset
dwc2_phy_update(dwc2, dwc2->ghwcfg2_bm.hs_phy_type);
// Set max speed
uint32_t dcfg = dwc2->dcfg;
dcfg &= ~DCFG_DSPD_Msk;
dcfg |= DCFG_DSPD_HS << DCFG_DSPD_Pos;
// XCVRDLY: transceiver delay between xcvr_sel and txvalid during device chirp is required
// when using with some PHYs such as USB334x (USB3341, USB3343, USB3346, USB3347)
if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI) dcfg |= DCFG_XCVRDLY;
dwc2->dcfg = dcfg;
}
static bool check_dwc2(dwc2_regs_t* dwc2) {
#if CFG_TUSB_DEBUG >= DWC2_DEBUG
print_dwc2_info(dwc2);
#endif
// For some reasons: GD32VF103 snpsid and all hwcfg register are always zero (skip it)
(void) dwc2;
#if !TU_CHECK_MCU(OPT_MCU_GD32VF103)
uint32_t const gsnpsid = dwc2->gsnpsid & GSNPSID_ID_MASK;
TU_ASSERT(gsnpsid == DWC2_OTG_ID || gsnpsid == DWC2_FS_IOT_ID || gsnpsid == DWC2_HS_IOT_ID);
#endif
return true;
}
void dcd_init(uint8_t rhport) {
// Programming model begins in the last section of the chapter on the USB
// peripheral in each Reference Manual.
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// Check Synopsys ID register, failed if controller clock/power is not enabled
if (!check_dwc2(dwc2)) return;
dcd_disconnect(rhport);
// max number of endpoints & total_fifo_size are:
// hw_cfg2->num_dev_ep, hw_cfg2->total_fifo_size
if (phy_hs_supported(dwc2)) {
phy_hs_init(dwc2); // Highspeed
} else {
phy_fs_init(dwc2); // core does not support highspeed or hs phy is not present
}
// Restart PHY clock
dwc2->pcgctl &= ~(PCGCTL_STOPPCLK | PCGCTL_GATEHCLK | PCGCTL_PWRCLMP | PCGCTL_RSTPDWNMODULE);
/* Set HS/FS Timeout Calibration to 7 (max available value).
* The number of PHY clocks that the application programs in
* this field is added to the high/full speed interpacket timeout
* duration in the core to account for any additional delays
* introduced by the PHY. This can be required, because the delay
* introduced by the PHY in generating the linestate condition
* can vary from one PHY to another.
*/
dwc2->gusbcfg |= (7ul << GUSBCFG_TOCAL_Pos);
// Force device mode
dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_FHMOD) | GUSBCFG_FDMOD;
// Clear A override, force B Valid
dwc2->gotgctl = (dwc2->gotgctl & ~GOTGCTL_AVALOEN) | GOTGCTL_BVALOEN | GOTGCTL_BVALOVAL;
// If USB host misbehaves during status portion of control xfer
// (non zero-length packet), send STALL back and discard.
dwc2->dcfg |= DCFG_NZLSOHSK;
fifo_flush_tx(dwc2, 0x10); // all tx fifo
fifo_flush_rx(dwc2);
// Clear all interrupts
uint32_t int_mask = dwc2->gintsts;
dwc2->gintsts |= int_mask;
int_mask = dwc2->gotgint;
dwc2->gotgint |= int_mask;
// Required as part of core initialization.
dwc2->gintmsk = GINTMSK_OTGINT | GINTMSK_RXFLVLM |
GINTMSK_USBSUSPM | GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_WUIM;
// Configure TX FIFO empty level for interrupt. Default is complete empty
dwc2->gahbcfg |= GAHBCFG_TXFELVL;
// Enable global interrupt
dwc2->gahbcfg |= GAHBCFG_GINT;
// make sure we are in device mode
// TU_ASSERT(!(dwc2->gintsts & GINTSTS_CMOD), );
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gotgctl);
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gusbcfg);
// TU_LOG_HEX(DWC2_DEBUG, dwc2->dcfg);
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gahbcfg);
dcd_connect(rhport);
}
void dcd_int_enable(uint8_t rhport) {
dwc2_dcd_int_enable(rhport);
}
void dcd_int_disable(uint8_t rhport) {
dwc2_dcd_int_disable(rhport);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos);
// Response with status after changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// set remote wakeup
dwc2->dctl |= DCTL_RWUSIG;
// enable SOF to detect bus resume
dwc2->gintsts = GINTSTS_SOF;
dwc2->gintmsk |= GINTMSK_SOFM;
// Per specs: remote wakeup signal bit must be clear within 1-15ms
dwc2_remote_wakeup_delay();
dwc2->dctl &= ~DCTL_RWUSIG;
}
void dcd_connect(uint8_t rhport) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
dwc2->dctl &= ~DCTL_SDIS;
}
void dcd_disconnect(uint8_t rhport) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
dwc2->dctl |= DCTL_SDIS;
}
// Be advised: audio, video and possibly other iso-ep classes use dcd_sof_enable() to enable/disable its corresponding ISR on purpose!
void dcd_sof_enable(uint8_t rhport, bool en) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
_sof_en = en;
if (en) {
dwc2->gintsts = GINTSTS_SOF;
dwc2->gintmsk |= GINTMSK_SOFM;
} else {
dwc2->gintmsk &= ~GINTMSK_SOFM;
}
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) {
TU_ASSERT(fifo_alloc(rhport, desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt)));
edpt_activate(rhport, desc_edpt);
return true;
}
// Close all non-control endpoints, cancel all pending transfers if any.
void dcd_edpt_close_all(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
// Disable non-control interrupt
dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
for (uint8_t n = 1; n < ep_count; n++) {
// disable OUT endpoint
dwc2->epout[n].doepctl = 0;
xfer_status[n][TUSB_DIR_OUT].max_size = 0;
// disable IN endpoint
dwc2->epin[n].diepctl = 0;
xfer_status[n][TUSB_DIR_IN].max_size = 0;
}
// reset allocated fifo OUT
dwc2->grxfsiz = calc_grxfsiz(64, ep_count);
// reset allocated fifo IN
_allocated_fifo_words_tx = 16;
fifo_flush_tx(dwc2, 0x10); // all tx fifo
fifo_flush_rx(dwc2);
}
bool dcd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) {
TU_ASSERT(fifo_alloc(rhport, ep_addr, largest_packet_size));
return true;
}
bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) {
// Disable EP to clear potential incomplete transfers
edpt_disable(rhport, p_endpoint_desc->bEndpointAddress, false);
edpt_activate(rhport, p_endpoint_desc);
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = buffer;
xfer->ff = NULL;
xfer->total_len = total_bytes;
// EP0 can only handle one packet
if (epnum == 0) {
ep0_pending[dir] = total_bytes;
// Schedule the first transaction for EP0 transfer
edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
} else {
uint16_t num_packets = (total_bytes / xfer->max_size);
uint16_t const short_packet_size = total_bytes % xfer->max_size;
// Zero-size packet is special case.
if ((short_packet_size > 0) || (total_bytes == 0)) num_packets++;
// Schedule packets to be sent within interrupt
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
}
return true;
}
// The number of bytes has to be given explicitly to allow more flexible control of how many
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t* ff, uint16_t total_bytes) {
// USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1
TU_ASSERT(ff->item_size == 1);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = NULL;
xfer->ff = ff;
xfer->total_len = total_bytes;
uint16_t num_packets = (total_bytes / xfer->max_size);
uint16_t const short_packet_size = total_bytes % xfer->max_size;
// Zero-size packet is special case.
if (short_packet_size > 0 || (total_bytes == 0)) num_packets++;
// Schedule packets to be sent within interrupt
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
return true;
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
edpt_disable(rhport, ep_addr, false);
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
edpt_disable(rhport, ep_addr, true);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// Clear stall and reset data toggle
if (dir == TUSB_DIR_IN) {
dwc2->epin[epnum].diepctl &= ~DIEPCTL_STALL;
dwc2->epin[epnum].diepctl |= DIEPCTL_SD0PID_SEVNFRM;
} else {
dwc2->epout[epnum].doepctl &= ~DOEPCTL_STALL;
dwc2->epout[epnum].doepctl |= DOEPCTL_SD0PID_SEVNFRM;
}
}
/*------------------------------------------------------------------*/
// Read a single data packet from receive FIFO
static void read_fifo_packet(uint8_t rhport, uint8_t* dst, uint16_t len) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
volatile const uint32_t* rx_fifo = dwc2->fifo[0];
// Reading full available 32 bit words from fifo
uint16_t full_words = len >> 2;
while (full_words--) {
tu_unaligned_write32(dst, *rx_fifo);
dst += 4;
}
// Read the remaining 1-3 bytes from fifo
uint8_t const bytes_rem = len & 0x03;
if (bytes_rem != 0) {
uint32_t const tmp = *rx_fifo;
dst[0] = tu_u32_byte0(tmp);
if (bytes_rem > 1) dst[1] = tu_u32_byte1(tmp);
if (bytes_rem > 2) dst[2] = tu_u32_byte2(tmp);
}
}
// Write a single data packet to EPIN FIFO
static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const* src, uint16_t len) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
volatile uint32_t* tx_fifo = dwc2->fifo[fifo_num];
// Pushing full available 32 bit words to fifo
uint16_t full_words = len >> 2;
while (full_words--) {
*tx_fifo = tu_unaligned_read32(src);
src += 4;
}
// Write the remaining 1-3 bytes into fifo
uint8_t const bytes_rem = len & 0x03;
if (bytes_rem) {
uint32_t tmp_word = src[0];
if (bytes_rem > 1) tmp_word |= (src[1] << 8);
if (bytes_rem > 2) tmp_word |= (src[2] << 16);
*tx_fifo = tmp_word;
}
}
static void handle_rxflvl_irq(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
volatile uint32_t const* rx_fifo = dwc2->fifo[0];
// Pop control word off FIFO
uint32_t const ctl_word = dwc2->grxstsp;
uint8_t const pktsts = (ctl_word & GRXSTSP_PKTSTS_Msk) >> GRXSTSP_PKTSTS_Pos;
uint8_t const epnum = (ctl_word & GRXSTSP_EPNUM_Msk) >> GRXSTSP_EPNUM_Pos;
uint16_t const bcnt = (ctl_word & GRXSTSP_BCNT_Msk) >> GRXSTSP_BCNT_Pos;
dwc2_epout_t* epout = &dwc2->epout[epnum];
//#if CFG_TUSB_DEBUG >= DWC2_DEBUG
// const char * pktsts_str[] =
// {
// "ASSERT", "Global NAK (ISR)", "Out Data Received", "Out Transfer Complete (ISR)",
// "Setup Complete (ISR)", "ASSERT", "Setup Data Received"
// };
// TU_LOG_LOCATION();
// TU_LOG(DWC2_DEBUG, " EP %02X, Byte Count %u, %s\r\n", epnum, bcnt, pktsts_str[pktsts]);
// TU_LOG(DWC2_DEBUG, " daint = %08lX, doepint = %04X\r\n", (unsigned long) dwc2->daint, (unsigned int) epout->doepint);
//#endif
switch (pktsts) {
// Global OUT NAK: do nothing
case GRXSTS_PKTSTS_GLOBALOUTNAK:
break;
case GRXSTS_PKTSTS_SETUPRX:
// Setup packet received
// We can receive up to three setup packets in succession, but
// only the last one is valid.
_setup_packet[0] = (*rx_fifo);
_setup_packet[1] = (*rx_fifo);
break;
case GRXSTS_PKTSTS_SETUPDONE:
// Setup packet done (Interrupt)
epout->doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
break;
case GRXSTS_PKTSTS_OUTRX: {
// Out packet received
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
// Read packet off RxFIFO
if (xfer->ff) {
// Ring buffer
tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void*) (uintptr_t) rx_fifo, bcnt);
} else {
// Linear buffer
read_fifo_packet(rhport, xfer->buffer, bcnt);
// Increment pointer to xfer data
xfer->buffer += bcnt;
}
// Truncate transfer length in case of short packet
if (bcnt < xfer->max_size) {
xfer->total_len -= (epout->doeptsiz & DOEPTSIZ_XFRSIZ_Msk) >> DOEPTSIZ_XFRSIZ_Pos;
if (epnum == 0) {
xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
ep0_pending[TUSB_DIR_OUT] = 0;
}
}
}
break;
// Out packet done (Interrupt)
case GRXSTS_PKTSTS_OUTDONE:
// Occurred on STM32L47 with dwc2 version 3.10a but not found on other version like 2.80a or 3.30a
// May (or not) be 3.10a specific feature/bug or depending on MCU configuration
// XFRC complete is additionally generated when
// - setup packet is received
// - complete the data stage of control write is complete
if ((epnum == 0) && (bcnt == 0) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) {
uint32_t doepint = epout->doepint;
if (doepint & (DOEPINT_STPKTRX | DOEPINT_OTEPSPR)) {
// skip this "no-data" transfer complete event
// Note: STPKTRX will be clear later by setup received handler
uint32_t clear_flags = DOEPINT_XFRC;
if (doepint & DOEPINT_OTEPSPR) clear_flags |= DOEPINT_OTEPSPR;
epout->doepint = clear_flags;
// TU_LOG(DWC2_DEBUG, " FIX extra transfer complete on setup/data compete\r\n");
}
}
break;
default: // Invalid
TU_BREAKPOINT();
break;
}
}
static void handle_epout_irq(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
// DAINT for a given EP clears when DOEPINTx is cleared.
// OEPINT will be cleared when DAINT's out bits are cleared.
for (uint8_t n = 0; n < ep_count; n++) {
if (dwc2->daint & TU_BIT(DAINT_OEPINT_Pos + n)) {
dwc2_epout_t* epout = &dwc2->epout[n];
uint32_t const doepint = epout->doepint;
// SETUP packet Setup Phase done.
if (doepint & DOEPINT_STUP) {
uint32_t clear_flag = DOEPINT_STUP;
// STPKTRX is only available for version from 3_00a
if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) {
clear_flag |= DOEPINT_STPKTRX;
}
epout->doepint = clear_flag;
dcd_event_setup_received(rhport, (uint8_t*) _setup_packet, true);
}
// OUT XFER complete
if (epout->doepint & DOEPINT_XFRC) {
epout->doepint = DOEPINT_XFRC;
xfer_ctl_t* xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
// EP0 can only handle one packet
if ((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
// Schedule another packet to be received.
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
} else {
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
}
}
}
static void handle_epin_irq(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
dwc2_epin_t* epin = dwc2->epin;
// DAINT for a given EP clears when DIEPINTx is cleared.
// IEPINT will be cleared when DAINT's out bits are cleared.
for (uint8_t n = 0; n < ep_count; n++) {
if (dwc2->daint & TU_BIT(DAINT_IEPINT_Pos + n)) {
// IN XFER complete (entire xfer).
xfer_ctl_t* xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);
if (epin[n].diepint & DIEPINT_XFRC) {
epin[n].diepint = DIEPINT_XFRC;
// EP0 can only handle one packet
if ((n == 0) && ep0_pending[TUSB_DIR_IN]) {
// Schedule another packet to be transmitted.
edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
} else {
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
// XFER FIFO empty
if ((epin[n].diepint & DIEPINT_TXFE) && (dwc2->diepempmsk & (1 << n))) {
// diepint's TXFE bit is read-only, software cannot clear it.
// It will only be cleared by hardware when written bytes is more than
// - 64 bytes or
// - Half of TX FIFO size (configured by DIEPTXF)
uint16_t remaining_packets = (epin[n].dieptsiz & DIEPTSIZ_PKTCNT_Msk) >> DIEPTSIZ_PKTCNT_Pos;
// Process every single packet (only whole packets can be written to fifo)
for (uint16_t i = 0; i < remaining_packets; i++) {
uint16_t const remaining_bytes = (epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos;
// Packet can not be larger than ep max size
uint16_t const packet_size = tu_min16(remaining_bytes, xfer->max_size);
// It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current
// EP has to be checked if the buffer can take another WHOLE packet
if (packet_size > ((epin[n].dtxfsts & DTXFSTS_INEPTFSAV_Msk) << 2)) break;
// Push packet to Tx-FIFO
if (xfer->ff) {
volatile uint32_t* tx_fifo = dwc2->fifo[n];
tu_fifo_read_n_const_addr_full_words(xfer->ff, (void*) (uintptr_t) tx_fifo, packet_size);
} else {
write_fifo_packet(rhport, n, xfer->buffer, packet_size);
// Increment pointer to xfer data
xfer->buffer += packet_size;
}
}
// Turn off TXFE if all bytes are written.
if (((epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos) == 0) {
dwc2->diepempmsk &= ~(1 << n);
}
}
}
}
}
void dcd_int_handler(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint32_t const int_mask = dwc2->gintmsk;
uint32_t const int_status = dwc2->gintsts & int_mask;
if (int_status & GINTSTS_USBRST) {
// USBRST is start of reset.
dwc2->gintsts = GINTSTS_USBRST;
bus_reset(rhport);
}
if (int_status & GINTSTS_ENUMDNE) {
// ENUMDNE is the end of reset where speed of the link is detected
dwc2->gintsts = GINTSTS_ENUMDNE;
tusb_speed_t speed;
switch ((dwc2->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos) {
case DSTS_ENUMSPD_HS:
speed = TUSB_SPEED_HIGH;
break;
case DSTS_ENUMSPD_LS:
speed = TUSB_SPEED_LOW;
break;
case DSTS_ENUMSPD_FS_HSPHY:
case DSTS_ENUMSPD_FS:
default:
speed = TUSB_SPEED_FULL;
break;
}
// TODO must update GUSBCFG_TRDT according to link speed
dcd_event_bus_reset(rhport, speed, true);
}
if (int_status & GINTSTS_USBSUSP) {
dwc2->gintsts = GINTSTS_USBSUSP;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
if (int_status & GINTSTS_WKUINT) {
dwc2->gintsts = GINTSTS_WKUINT;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
// TODO check GINTSTS_DISCINT for disconnect detection
// if(int_status & GINTSTS_DISCINT)
if (int_status & GINTSTS_OTGINT) {
// OTG INT bit is read-only
uint32_t const otg_int = dwc2->gotgint;
if (otg_int & GOTGINT_SEDET) {
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
dwc2->gotgint = otg_int;
}
if(int_status & GINTSTS_SOF) {
dwc2->gintsts = GINTSTS_SOF;
const uint32_t frame = (dwc2->dsts & DSTS_FNSOF) >> DSTS_FNSOF_Pos;
// Disable SOF interrupt if SOF was not explicitly enabled since SOF was used for remote wakeup detection
if (!_sof_en) {
dwc2->gintmsk &= ~GINTMSK_SOFM;
}
dcd_event_sof(rhport, frame, true);
}
// RxFIFO non-empty interrupt handling.
if (int_status & GINTSTS_RXFLVL) {
// RXFLVL bit is read-only
// Mask out RXFLVL while reading data from FIFO
dwc2->gintmsk &= ~GINTMSK_RXFLVLM;
// Loop until all available packets were handled
do {
handle_rxflvl_irq(rhport);
} while(dwc2->gintsts & GINTSTS_RXFLVL);
dwc2->gintmsk |= GINTMSK_RXFLVLM;
}
// OUT endpoint interrupt handling.
if (int_status & GINTSTS_OEPINT) {
// OEPINT is read-only, clear using DOEPINTn
handle_epout_irq(rhport);
}
// IN endpoint interrupt handling.
if (int_status & GINTSTS_IEPINT) {
// IEPINT bit read-only, clear using DIEPINTn
handle_epin_irq(rhport);
}
// // Check for Incomplete isochronous IN transfer
// if(int_status & GINTSTS_IISOIXFR) {
// printf(" IISOIXFR!\r\n");
//// TU_LOG(DWC2_DEBUG, " IISOIXFR!\r\n");
// }
}
#endif

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://gitlife.ru/oschina-mirror/notrynohigh-BabyOS.git
git@gitlife.ru:oschina-mirror/notrynohigh-BabyOS.git
oschina-mirror
notrynohigh-BabyOS
notrynohigh-BabyOS
master