1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/notrynohigh-BabyOS

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
cdc_host.c 57 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
notrynohigh Отправлено 12 месяцев назад 73bc233
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*
* Contribution
* - Heiko Kuester: CH34x support
*/
#include "tusb_option.h"
#if (CFG_TUH_ENABLED && CFG_TUH_CDC)
#include "usbh.h"
#include "usbh_pvt.h"
#include "cdc_host.h"
// Level where CFG_TUSB_DEBUG must be at least for this driver is logged
#ifndef CFG_TUH_CDC_LOG_LEVEL
#define CFG_TUH_CDC_LOG_LEVEL CFG_TUH_LOG_LEVEL
#endif
#define TU_LOG_DRV(...) TU_LOG(CFG_TUH_CDC_LOG_LEVEL, __VA_ARGS__)
//--------------------------------------------------------------------+
// Host CDC Interface
//--------------------------------------------------------------------+
typedef struct {
uint8_t daddr;
uint8_t bInterfaceNumber;
uint8_t bInterfaceSubClass;
uint8_t bInterfaceProtocol;
uint8_t ep_notif;
uint8_t serial_drid; // Serial Driver ID
bool mounted; // Enumeration is complete
cdc_acm_capability_t acm_capability;
TU_ATTR_ALIGNED(4) cdc_line_coding_t line_coding; // Baudrate, stop bits, parity, data width
uint8_t line_state; // DTR (bit0), RTS (bit1)
#if CFG_TUH_CDC_FTDI || CFG_TUH_CDC_CP210X || CFG_TUH_CDC_CH34X
cdc_line_coding_t requested_line_coding;
// 1 byte padding
#endif
tuh_xfer_cb_t user_control_cb;
struct {
tu_edpt_stream_t tx;
tu_edpt_stream_t rx;
uint8_t tx_ff_buf[CFG_TUH_CDC_TX_BUFSIZE];
CFG_TUH_MEM_ALIGN uint8_t tx_ep_buf[CFG_TUH_CDC_TX_EPSIZE];
uint8_t rx_ff_buf[CFG_TUH_CDC_TX_BUFSIZE];
CFG_TUH_MEM_ALIGN uint8_t rx_ep_buf[CFG_TUH_CDC_TX_EPSIZE];
} stream;
} cdch_interface_t;
CFG_TUH_MEM_SECTION
static cdch_interface_t cdch_data[CFG_TUH_CDC];
//--------------------------------------------------------------------+
// Serial Driver
//--------------------------------------------------------------------+
//------------- ACM prototypes -------------//
static bool acm_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
static void acm_process_config(tuh_xfer_t* xfer);
static bool acm_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool acm_set_data_format(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool acm_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool acm_set_control_line_state(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
//------------- FTDI prototypes -------------//
#if CFG_TUH_CDC_FTDI
#include "ftdi_sio.h"
static uint16_t const ftdi_vid_pid_list[][2] = {CFG_TUH_CDC_FTDI_VID_PID_LIST};
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint16_t max_len);
static void ftdi_process_config(tuh_xfer_t* xfer);
static bool ftdi_sio_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_set_data_format(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_sio_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
#endif
//------------- CP210X prototypes -------------//
#if CFG_TUH_CDC_CP210X
#include "cp210x.h"
static uint16_t const cp210x_vid_pid_list[][2] = {CFG_TUH_CDC_CP210X_VID_PID_LIST};
static bool cp210x_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
static void cp210x_process_config(tuh_xfer_t* xfer);
static bool cp210x_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool cp210x_set_data_format(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool cp210x_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool cp210x_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
#endif
//------------- CH34x prototypes -------------//
#if CFG_TUH_CDC_CH34X
#include "ch34x.h"
static uint16_t const ch34x_vid_pid_list[][2] = {CFG_TUH_CDC_CH34X_VID_PID_LIST};
static bool ch34x_open(uint8_t daddr, tusb_desc_interface_t const* itf_desc, uint16_t max_len);
static void ch34x_process_config(tuh_xfer_t* xfer);
static bool ch34x_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ch34x_set_data_format(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ch34x_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ch34x_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
#endif
//------------- Common -------------//
enum {
SERIAL_DRIVER_ACM = 0,
#if CFG_TUH_CDC_FTDI
SERIAL_DRIVER_FTDI,
#endif
#if CFG_TUH_CDC_CP210X
SERIAL_DRIVER_CP210X,
#endif
#if CFG_TUH_CDC_CH34X
SERIAL_DRIVER_CH34X,
#endif
SERIAL_DRIVER_COUNT
};
typedef struct {
uint16_t const (*vid_pid_list)[2];
uint16_t const vid_pid_count;
bool (*const open)(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint16_t max_len);
void (*const process_set_config)(tuh_xfer_t* xfer);
bool (*const set_control_line_state)(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
bool (*const set_baudrate)(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
bool (*const set_data_format)(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
bool (*const set_line_coding)(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
} cdch_serial_driver_t;
// Note driver list must be in the same order as SERIAL_DRIVER enum
static const cdch_serial_driver_t serial_drivers[] = {
{
.vid_pid_list = NULL,
.vid_pid_count = 0,
.open = acm_open,
.process_set_config = acm_process_config,
.set_control_line_state = acm_set_control_line_state,
.set_baudrate = acm_set_baudrate,
.set_data_format = acm_set_data_format,
.set_line_coding = acm_set_line_coding
},
#if CFG_TUH_CDC_FTDI
{
.vid_pid_list = ftdi_vid_pid_list,
.vid_pid_count = TU_ARRAY_SIZE(ftdi_vid_pid_list),
.open = ftdi_open,
.process_set_config = ftdi_process_config,
.set_control_line_state = ftdi_sio_set_modem_ctrl,
.set_baudrate = ftdi_sio_set_baudrate,
.set_data_format = ftdi_set_data_format,
.set_line_coding = ftdi_set_line_coding
},
#endif
#if CFG_TUH_CDC_CP210X
{
.vid_pid_list = cp210x_vid_pid_list,
.vid_pid_count = TU_ARRAY_SIZE(cp210x_vid_pid_list),
.open = cp210x_open,
.process_set_config = cp210x_process_config,
.set_control_line_state = cp210x_set_modem_ctrl,
.set_baudrate = cp210x_set_baudrate,
.set_data_format = cp210x_set_data_format,
.set_line_coding = cp210x_set_line_coding
},
#endif
#if CFG_TUH_CDC_CH34X
{
.vid_pid_list = ch34x_vid_pid_list,
.vid_pid_count = TU_ARRAY_SIZE(ch34x_vid_pid_list),
.open = ch34x_open,
.process_set_config = ch34x_process_config,
.set_control_line_state = ch34x_set_modem_ctrl,
.set_baudrate = ch34x_set_baudrate,
.set_data_format = ch34x_set_data_format,
.set_line_coding = ch34x_set_line_coding
},
#endif
};
TU_VERIFY_STATIC(TU_ARRAY_SIZE(serial_drivers) == SERIAL_DRIVER_COUNT, "Serial driver count mismatch");
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static inline cdch_interface_t* get_itf(uint8_t idx) {
TU_ASSERT(idx < CFG_TUH_CDC, NULL);
cdch_interface_t* p_cdc = &cdch_data[idx];
return (p_cdc->daddr != 0) ? p_cdc : NULL;
}
static inline uint8_t get_idx_by_ep_addr(uint8_t daddr, uint8_t ep_addr) {
for(uint8_t i=0; i<CFG_TUH_CDC; i++) {
cdch_interface_t* p_cdc = &cdch_data[i];
if ( (p_cdc->daddr == daddr) &&
(ep_addr == p_cdc->ep_notif || ep_addr == p_cdc->stream.rx.ep_addr || ep_addr == p_cdc->stream.tx.ep_addr)) {
return i;
}
}
return TUSB_INDEX_INVALID_8;
}
static cdch_interface_t* make_new_itf(uint8_t daddr, tusb_desc_interface_t const *itf_desc) {
for(uint8_t i=0; i<CFG_TUH_CDC; i++) {
if (cdch_data[i].daddr == 0) {
cdch_interface_t* p_cdc = &cdch_data[i];
p_cdc->daddr = daddr;
p_cdc->bInterfaceNumber = itf_desc->bInterfaceNumber;
p_cdc->bInterfaceSubClass = itf_desc->bInterfaceSubClass;
p_cdc->bInterfaceProtocol = itf_desc->bInterfaceProtocol;
p_cdc->line_state = 0;
return p_cdc;
}
}
return NULL;
}
static bool open_ep_stream_pair(cdch_interface_t* p_cdc , tusb_desc_endpoint_t const *desc_ep);
static void set_config_complete(cdch_interface_t * p_cdc, uint8_t idx, uint8_t itf_num);
static void cdch_internal_control_complete(tuh_xfer_t* xfer);
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
uint8_t tuh_cdc_itf_get_index(uint8_t daddr, uint8_t itf_num) {
for (uint8_t i = 0; i < CFG_TUH_CDC; i++) {
const cdch_interface_t* p_cdc = &cdch_data[i];
if (p_cdc->daddr == daddr && p_cdc->bInterfaceNumber == itf_num) return i;
}
return TUSB_INDEX_INVALID_8;
}
bool tuh_cdc_itf_get_info(uint8_t idx, tuh_itf_info_t* info) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && info);
info->daddr = p_cdc->daddr;
// re-construct descriptor
tusb_desc_interface_t* desc = &info->desc;
desc->bLength = sizeof(tusb_desc_interface_t);
desc->bDescriptorType = TUSB_DESC_INTERFACE;
desc->bInterfaceNumber = p_cdc->bInterfaceNumber;
desc->bAlternateSetting = 0;
desc->bNumEndpoints = 2u + (p_cdc->ep_notif ? 1u : 0u);
desc->bInterfaceClass = TUSB_CLASS_CDC;
desc->bInterfaceSubClass = p_cdc->bInterfaceSubClass;
desc->bInterfaceProtocol = p_cdc->bInterfaceProtocol;
desc->iInterface = 0; // not used yet
return true;
}
bool tuh_cdc_mounted(uint8_t idx) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return p_cdc->mounted;
}
bool tuh_cdc_get_dtr(uint8_t idx) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return (p_cdc->line_state & CDC_CONTROL_LINE_STATE_DTR) ? true : false;
}
bool tuh_cdc_get_rts(uint8_t idx) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return (p_cdc->line_state & CDC_CONTROL_LINE_STATE_RTS) ? true : false;
}
bool tuh_cdc_get_local_line_coding(uint8_t idx, cdc_line_coding_t* line_coding) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
*line_coding = p_cdc->line_coding;
return true;
}
//--------------------------------------------------------------------+
// Write
//--------------------------------------------------------------------+
uint32_t tuh_cdc_write(uint8_t idx, void const* buffer, uint32_t bufsize) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_write(&p_cdc->stream.tx, buffer, bufsize);
}
uint32_t tuh_cdc_write_flush(uint8_t idx) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_write_xfer(&p_cdc->stream.tx);
}
bool tuh_cdc_write_clear(uint8_t idx) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_clear(&p_cdc->stream.tx);
}
uint32_t tuh_cdc_write_available(uint8_t idx) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_write_available(&p_cdc->stream.tx);
}
//--------------------------------------------------------------------+
// Read
//--------------------------------------------------------------------+
uint32_t tuh_cdc_read (uint8_t idx, void* buffer, uint32_t bufsize) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_read(&p_cdc->stream.rx, buffer, bufsize);
}
uint32_t tuh_cdc_read_available(uint8_t idx) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_read_available(&p_cdc->stream.rx);
}
bool tuh_cdc_peek(uint8_t idx, uint8_t* ch) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_peek(&p_cdc->stream.rx, ch);
}
bool tuh_cdc_read_clear (uint8_t idx) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
bool ret = tu_edpt_stream_clear(&p_cdc->stream.rx);
tu_edpt_stream_read_xfer(&p_cdc->stream.rx);
return ret;
}
//--------------------------------------------------------------------+
// Control Endpoint API
//--------------------------------------------------------------------+
static void process_internal_control_complete(tuh_xfer_t* xfer, uint8_t itf_num) {
uint8_t idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t* p_cdc = get_itf(idx);
TU_ASSERT(p_cdc, );
uint16_t const value = tu_le16toh(xfer->setup->wValue);
if (xfer->result == XFER_RESULT_SUCCESS) {
switch (p_cdc->serial_drid) {
case SERIAL_DRIVER_ACM:
switch (xfer->setup->bRequest) {
case CDC_REQUEST_SET_CONTROL_LINE_STATE:
p_cdc->line_state = (uint8_t) value;
break;
case CDC_REQUEST_SET_LINE_CODING: {
uint16_t const len = tu_min16(sizeof(cdc_line_coding_t), tu_le16toh(xfer->setup->wLength));
memcpy(&p_cdc->line_coding, xfer->buffer, len);
break;
}
default: break;
}
break;
#if CFG_TUH_CDC_FTDI
case SERIAL_DRIVER_FTDI:
switch (xfer->setup->bRequest) {
case FTDI_SIO_MODEM_CTRL:
p_cdc->line_state = (uint8_t) value;
break;
case FTDI_SIO_SET_BAUD_RATE:
p_cdc->line_coding.bit_rate = p_cdc->requested_line_coding.bit_rate;
break;
default: break;
}
break;
#endif
#if CFG_TUH_CDC_CP210X
case SERIAL_DRIVER_CP210X:
switch(xfer->setup->bRequest) {
case CP210X_SET_MHS:
p_cdc->line_state = (uint8_t) value;
break;
case CP210X_SET_BAUDRATE: {
uint32_t baudrate;
memcpy(&baudrate, xfer->buffer, sizeof(uint32_t));
p_cdc->line_coding.bit_rate = tu_le32toh(baudrate);
break;
}
default: break;
}
break;
#endif
#if CFG_TUH_CDC_CH34X
case SERIAL_DRIVER_CH34X:
switch (xfer->setup->bRequest) {
case CH34X_REQ_WRITE_REG:
// register write request
switch (value) {
case CH34X_REG16_DIVISOR_PRESCALER:
// baudrate
p_cdc->line_coding.bit_rate = p_cdc->requested_line_coding.bit_rate;
break;
case CH32X_REG16_LCR2_LCR:
// data format
p_cdc->line_coding.stop_bits = p_cdc->requested_line_coding.stop_bits;
p_cdc->line_coding.parity = p_cdc->requested_line_coding.parity;
p_cdc->line_coding.data_bits = p_cdc->requested_line_coding.data_bits;
break;
default: break;
}
break;
case CH34X_REQ_MODEM_CTRL: {
// set modem controls RTS/DTR request. Note: signals are inverted
uint16_t const modem_signal = ~value;
if (modem_signal & CH34X_BIT_RTS) {
p_cdc->line_state |= CDC_CONTROL_LINE_STATE_RTS;
} else {
p_cdc->line_state &= (uint8_t) ~CDC_CONTROL_LINE_STATE_RTS;
}
if (modem_signal & CH34X_BIT_DTR) {
p_cdc->line_state |= CDC_CONTROL_LINE_STATE_DTR;
} else {
p_cdc->line_state &= (uint8_t) ~CDC_CONTROL_LINE_STATE_DTR;
}
break;
}
default: break;
}
break;
#endif
default: break;
}
}
xfer->complete_cb = p_cdc->user_control_cb;
if (xfer->complete_cb) {
xfer->complete_cb(xfer);
}
}
// internal control complete to update state such as line state, encoding
static void cdch_internal_control_complete(tuh_xfer_t* xfer) {
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
process_internal_control_complete(xfer, itf_num);
}
bool tuh_cdc_set_control_line_state(uint8_t idx, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
cdch_serial_driver_t const* driver = &serial_drivers[p_cdc->serial_drid];
if (complete_cb) {
return driver->set_control_line_state(p_cdc, line_state, complete_cb, user_data);
} else {
// blocking
xfer_result_t result = XFER_RESULT_INVALID;
bool ret = driver->set_control_line_state(p_cdc, line_state, complete_cb, (uintptr_t) &result);
if (user_data) {
// user_data is not NULL, return result via user_data
*((xfer_result_t*) user_data) = result;
}
TU_VERIFY(ret && result == XFER_RESULT_SUCCESS);
p_cdc->line_state = (uint8_t) line_state;
return true;
}
}
bool tuh_cdc_set_baudrate(uint8_t idx, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
cdch_serial_driver_t const* driver = &serial_drivers[p_cdc->serial_drid];
if (complete_cb) {
return driver->set_baudrate(p_cdc, baudrate, complete_cb, user_data);
} else {
// blocking
xfer_result_t result = XFER_RESULT_INVALID;
bool ret = driver->set_baudrate(p_cdc, baudrate, complete_cb, (uintptr_t) &result);
if (user_data) {
// user_data is not NULL, return result via user_data
*((xfer_result_t*) user_data) = result;
}
TU_VERIFY(ret && result == XFER_RESULT_SUCCESS);
p_cdc->line_coding.bit_rate = baudrate;
return true;
}
}
bool tuh_cdc_set_data_format(uint8_t idx, uint8_t stop_bits, uint8_t parity, uint8_t data_bits,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
cdch_serial_driver_t const* driver = &serial_drivers[p_cdc->serial_drid];
if (complete_cb) {
return driver->set_data_format(p_cdc, stop_bits, parity, data_bits, complete_cb, user_data);
} else {
// blocking
xfer_result_t result = XFER_RESULT_INVALID;
bool ret = driver->set_data_format(p_cdc, stop_bits, parity, data_bits, complete_cb, (uintptr_t) &result);
if (user_data) {
// user_data is not NULL, return result via user_data
*((xfer_result_t*) user_data) = result;
}
TU_VERIFY(ret && result == XFER_RESULT_SUCCESS);
p_cdc->line_coding.stop_bits = stop_bits;
p_cdc->line_coding.parity = parity;
p_cdc->line_coding.data_bits = data_bits;
return true;
}
}
bool tuh_cdc_set_line_coding(uint8_t idx, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
cdch_serial_driver_t const* driver = &serial_drivers[p_cdc->serial_drid];
if ( complete_cb ) {
return driver->set_line_coding(p_cdc, line_coding, complete_cb, user_data);
} else {
// blocking
xfer_result_t result = XFER_RESULT_INVALID;
bool ret = driver->set_line_coding(p_cdc, line_coding, complete_cb, (uintptr_t) &result);
if (user_data) {
// user_data is not NULL, return result via user_data
*((xfer_result_t*) user_data) = result;
}
TU_VERIFY(ret && result == XFER_RESULT_SUCCESS);
p_cdc->line_coding = *line_coding;
return true;
}
}
//--------------------------------------------------------------------+
// CLASS-USBH API
//--------------------------------------------------------------------+
bool cdch_init(void) {
TU_LOG_DRV("sizeof(cdch_interface_t) = %u\r\n", sizeof(cdch_interface_t));
tu_memclr(cdch_data, sizeof(cdch_data));
for (size_t i = 0; i < CFG_TUH_CDC; i++) {
cdch_interface_t* p_cdc = &cdch_data[i];
tu_edpt_stream_init(&p_cdc->stream.tx, true, true, false,
p_cdc->stream.tx_ff_buf, CFG_TUH_CDC_TX_BUFSIZE,
p_cdc->stream.tx_ep_buf, CFG_TUH_CDC_TX_EPSIZE);
tu_edpt_stream_init(&p_cdc->stream.rx, true, false, false,
p_cdc->stream.rx_ff_buf, CFG_TUH_CDC_RX_BUFSIZE,
p_cdc->stream.rx_ep_buf, CFG_TUH_CDC_RX_EPSIZE);
}
return true;
}
bool cdch_deinit(void) {
for (size_t i = 0; i < CFG_TUH_CDC; i++) {
cdch_interface_t* p_cdc = &cdch_data[i];
tu_edpt_stream_deinit(&p_cdc->stream.tx);
tu_edpt_stream_deinit(&p_cdc->stream.rx);
}
return true;
}
void cdch_close(uint8_t daddr) {
for (uint8_t idx = 0; idx < CFG_TUH_CDC; idx++) {
cdch_interface_t* p_cdc = &cdch_data[idx];
if (p_cdc->daddr == daddr) {
TU_LOG_DRV(" CDCh close addr = %u index = %u\r\n", daddr, idx);
// Invoke application callback
if (tuh_cdc_umount_cb) tuh_cdc_umount_cb(idx);
p_cdc->daddr = 0;
p_cdc->bInterfaceNumber = 0;
p_cdc->mounted = false;
tu_edpt_stream_close(&p_cdc->stream.tx);
tu_edpt_stream_close(&p_cdc->stream.rx);
}
}
}
bool cdch_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes) {
// TODO handle stall response, retry failed transfer ...
TU_ASSERT(event == XFER_RESULT_SUCCESS);
uint8_t const idx = get_idx_by_ep_addr(daddr, ep_addr);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc);
if ( ep_addr == p_cdc->stream.tx.ep_addr ) {
// invoke tx complete callback to possibly refill tx fifo
if (tuh_cdc_tx_complete_cb) tuh_cdc_tx_complete_cb(idx);
if ( 0 == tu_edpt_stream_write_xfer(&p_cdc->stream.tx) ) {
// If there is no data left, a ZLP should be sent if:
// - xferred_bytes is multiple of EP Packet size and not zero
tu_edpt_stream_write_zlp_if_needed(&p_cdc->stream.tx, xferred_bytes);
}
} else if ( ep_addr == p_cdc->stream.rx.ep_addr ) {
#if CFG_TUH_CDC_FTDI
if (p_cdc->serial_drid == SERIAL_DRIVER_FTDI) {
// FTDI reserve 2 bytes for status
// uint8_t status[2] = {p_cdc->stream.rx.ep_buf[0], p_cdc->stream.rx.ep_buf[1]};
tu_edpt_stream_read_xfer_complete_offset(&p_cdc->stream.rx, xferred_bytes, 2);
}else
#endif
{
tu_edpt_stream_read_xfer_complete(&p_cdc->stream.rx, xferred_bytes);
}
// invoke receive callback
if (tuh_cdc_rx_cb) tuh_cdc_rx_cb(idx);
// prepare for next transfer if needed
tu_edpt_stream_read_xfer(&p_cdc->stream.rx);
}else if ( ep_addr == p_cdc->ep_notif ) {
// TODO handle notification endpoint
}else {
TU_ASSERT(false);
}
return true;
}
//--------------------------------------------------------------------+
// Enumeration
//--------------------------------------------------------------------+
static bool open_ep_stream_pair(cdch_interface_t* p_cdc, tusb_desc_endpoint_t const* desc_ep) {
for (size_t i = 0; i < 2; i++) {
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType &&
TUSB_XFER_BULK == desc_ep->bmAttributes.xfer);
TU_ASSERT(tuh_edpt_open(p_cdc->daddr, desc_ep));
if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) {
tu_edpt_stream_open(&p_cdc->stream.rx, p_cdc->daddr, desc_ep);
} else {
tu_edpt_stream_open(&p_cdc->stream.tx, p_cdc->daddr, desc_ep);
}
desc_ep = (tusb_desc_endpoint_t const*) tu_desc_next(desc_ep);
}
return true;
}
bool cdch_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
(void) rhport;
// For CDC: only support ACM subclass
// Note: Protocol 0xFF can be RNDIS device
if (TUSB_CLASS_CDC == itf_desc->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass) {
return acm_open(daddr, itf_desc, max_len);
}
else if (SERIAL_DRIVER_COUNT > 1 &&
TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass) {
uint16_t vid, pid;
TU_VERIFY(tuh_vid_pid_get(daddr, &vid, &pid));
for (size_t dr = 1; dr < SERIAL_DRIVER_COUNT; dr++) {
cdch_serial_driver_t const* driver = &serial_drivers[dr];
for (size_t i = 0; i < driver->vid_pid_count; i++) {
if (driver->vid_pid_list[i][0] == vid && driver->vid_pid_list[i][1] == pid) {
return driver->open(daddr, itf_desc, max_len);
}
}
}
}
return false;
}
static void set_config_complete(cdch_interface_t * p_cdc, uint8_t idx, uint8_t itf_num) {
TU_LOG_DRV("CDCh Set Configure complete\r\n");
p_cdc->mounted = true;
if (tuh_cdc_mount_cb) tuh_cdc_mount_cb(idx);
// Prepare for incoming data
tu_edpt_stream_read_xfer(&p_cdc->stream.rx);
// notify usbh that driver enumeration is complete
usbh_driver_set_config_complete(p_cdc->daddr, itf_num);
}
bool cdch_set_config(uint8_t daddr, uint8_t itf_num) {
tusb_control_request_t request;
request.wIndex = tu_htole16((uint16_t) itf_num);
// fake transfer to kick-off process
tuh_xfer_t xfer;
xfer.daddr = daddr;
xfer.result = XFER_RESULT_SUCCESS;
xfer.setup = &request;
xfer.user_data = 0; // initial state
uint8_t const idx = tuh_cdc_itf_get_index(daddr, itf_num);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
serial_drivers[p_cdc->serial_drid].process_set_config(&xfer);
return true;
}
//--------------------------------------------------------------------+
// ACM
//--------------------------------------------------------------------+
enum {
CONFIG_ACM_SET_CONTROL_LINE_STATE = 0,
CONFIG_ACM_SET_LINE_CODING,
CONFIG_ACM_COMPLETE,
};
static bool acm_open(uint8_t daddr, tusb_desc_interface_t const* itf_desc, uint16_t max_len) {
uint8_t const* p_desc_end = ((uint8_t const*) itf_desc) + max_len;
cdch_interface_t* p_cdc = make_new_itf(daddr, itf_desc);
TU_VERIFY(p_cdc);
p_cdc->serial_drid = SERIAL_DRIVER_ACM;
//------------- Control Interface -------------//
uint8_t const* p_desc = tu_desc_next(itf_desc);
// Communication Functional Descriptors
while ((p_desc < p_desc_end) && (TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc))) {
if (CDC_FUNC_DESC_ABSTRACT_CONTROL_MANAGEMENT == cdc_functional_desc_typeof(p_desc)) {
// save ACM bmCapabilities
p_cdc->acm_capability = ((cdc_desc_func_acm_t const*) p_desc)->bmCapabilities;
}
p_desc = tu_desc_next(p_desc);
}
// Open notification endpoint of control interface if any
if (itf_desc->bNumEndpoints == 1) {
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(p_desc));
tusb_desc_endpoint_t const* desc_ep = (tusb_desc_endpoint_t const*) p_desc;
TU_ASSERT(tuh_edpt_open(daddr, desc_ep));
p_cdc->ep_notif = desc_ep->bEndpointAddress;
p_desc = tu_desc_next(p_desc);
}
//------------- Data Interface (if any) -------------//
if ((TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) &&
(TUSB_CLASS_CDC_DATA == ((tusb_desc_interface_t const*) p_desc)->bInterfaceClass)) {
// next to endpoint descriptor
p_desc = tu_desc_next(p_desc);
// data endpoints expected to be in pairs
TU_ASSERT(open_ep_stream_pair(p_cdc, (tusb_desc_endpoint_t const*) p_desc));
}
return true;
}
static void acm_process_config(tuh_xfer_t* xfer) {
uintptr_t const state = xfer->user_data;
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t* p_cdc = get_itf(idx);
TU_ASSERT(p_cdc,);
switch (state) {
case CONFIG_ACM_SET_CONTROL_LINE_STATE:
#if CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
if (p_cdc->acm_capability.support_line_request) {
TU_ASSERT(acm_set_control_line_state(p_cdc, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM, acm_process_config, CONFIG_ACM_SET_LINE_CODING),);
break;
}
#endif
TU_ATTR_FALLTHROUGH;
case CONFIG_ACM_SET_LINE_CODING:
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
if (p_cdc->acm_capability.support_line_request) {
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT(acm_set_line_coding(p_cdc, &line_coding, acm_process_config, CONFIG_ACM_COMPLETE),);
break;
}
#endif
TU_ATTR_FALLTHROUGH;
case CONFIG_ACM_COMPLETE:
// itf_num+1 to account for data interface as well
set_config_complete(p_cdc, idx, itf_num + 1);
break;
default:
break;
}
}
static bool acm_set_control_line_state(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_VERIFY(p_cdc->acm_capability.support_line_request);
TU_LOG_DRV("CDC ACM Set Control Line State\r\n");
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = CDC_REQUEST_SET_CONTROL_LINE_STATE,
.wValue = tu_htole16(line_state),
.wIndex = tu_htole16((uint16_t) p_cdc->bInterfaceNumber),
.wLength = 0
};
p_cdc->user_control_cb = complete_cb;
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb ? cdch_internal_control_complete : NULL, // complete_cb is NULL for sync call
.user_data = user_data
};
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
static bool acm_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_DRV("CDC ACM Set Line Conding\r\n");
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = CDC_REQUEST_SET_LINE_CODING,
.wValue = 0,
.wIndex = tu_htole16(p_cdc->bInterfaceNumber),
.wLength = tu_htole16(sizeof(cdc_line_coding_t))
};
// use usbh enum buf to hold line coding since user line_coding variable does not live long enough
uint8_t* enum_buf = usbh_get_enum_buf();
memcpy(enum_buf, line_coding, sizeof(cdc_line_coding_t));
p_cdc->user_control_cb = complete_cb;
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = enum_buf,
.complete_cb = complete_cb ? cdch_internal_control_complete : NULL, // complete_cb is NULL for sync call
.user_data = user_data
};
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
static bool acm_set_data_format(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_DRV("CDC ACM Set Data Format\r\n");
cdc_line_coding_t line_coding;
line_coding.bit_rate = p_cdc->line_coding.bit_rate;
line_coding.stop_bits = stop_bits;
line_coding.parity = parity;
line_coding.data_bits = data_bits;
return acm_set_line_coding(p_cdc, &line_coding, complete_cb, user_data);
}
static bool acm_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_VERIFY(p_cdc->acm_capability.support_line_request);
cdc_line_coding_t line_coding = p_cdc->line_coding;
line_coding.bit_rate = baudrate;
return acm_set_line_coding(p_cdc, &line_coding, complete_cb, user_data);
}
//--------------------------------------------------------------------+
// FTDI
//--------------------------------------------------------------------+
#if CFG_TUH_CDC_FTDI
enum {
CONFIG_FTDI_RESET = 0,
CONFIG_FTDI_MODEM_CTRL,
CONFIG_FTDI_SET_BAUDRATE,
CONFIG_FTDI_SET_DATA,
CONFIG_FTDI_COMPLETE
};
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint16_t max_len) {
// FTDI Interface includes 1 vendor interface + 2 bulk endpoints
TU_VERIFY(itf_desc->bInterfaceSubClass == 0xff && itf_desc->bInterfaceProtocol == 0xff && itf_desc->bNumEndpoints == 2);
TU_VERIFY(sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t) <= max_len);
cdch_interface_t * p_cdc = make_new_itf(daddr, itf_desc);
TU_VERIFY(p_cdc);
TU_LOG_DRV("FTDI opened\r\n");
p_cdc->serial_drid = SERIAL_DRIVER_FTDI;
// endpoint pair
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
// data endpoints expected to be in pairs
return open_ep_stream_pair(p_cdc, desc_ep);
}
// set request without data
static bool ftdi_sio_set_request(cdch_interface_t* p_cdc, uint8_t command, uint16_t value, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = TUSB_DIR_OUT
},
.bRequest = command,
.wValue = tu_htole16(value),
.wIndex = 0,
.wLength = 0
};
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
static bool ftdi_sio_reset(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return ftdi_sio_set_request(p_cdc, FTDI_SIO_RESET, FTDI_SIO_RESET_SIO, complete_cb, user_data);
}
static bool ftdi_set_data_format(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
(void) p_cdc;
(void) stop_bits;
(void) parity;
(void) data_bits;
(void) complete_cb;
(void) user_data;
// TODO not implemented yet
return false;
}
static bool ftdi_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
(void) p_cdc;
(void) line_coding;
(void) complete_cb;
(void) user_data;
// TODO not implemented yet
return false;
}
static bool ftdi_sio_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_DRV("CDC FTDI Set Control Line State\r\n");
p_cdc->user_control_cb = complete_cb;
TU_ASSERT(ftdi_sio_set_request(p_cdc, FTDI_SIO_MODEM_CTRL, 0x0300 | line_state,
complete_cb ? cdch_internal_control_complete : NULL, user_data));
return true;
}
static uint32_t ftdi_232bm_baud_base_to_divisor(uint32_t baud, uint32_t base) {
const uint8_t divfrac[8] = { 0, 3, 2, 4, 1, 5, 6, 7 };
uint32_t divisor;
/* divisor shifted 3 bits to the left */
uint32_t divisor3 = base / (2 * baud);
divisor = (divisor3 >> 3);
divisor |= (uint32_t) divfrac[divisor3 & 0x7] << 14;
/* Deal with special cases for highest baud rates. */
if (divisor == 1) { /* 1.0 */
divisor = 0;
}
else if (divisor == 0x4001) { /* 1.5 */
divisor = 1;
}
return divisor;
}
static uint32_t ftdi_232bm_baud_to_divisor(uint32_t baud) {
return ftdi_232bm_baud_base_to_divisor(baud, 48000000u);
}
static bool ftdi_sio_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
uint16_t const divisor = (uint16_t) ftdi_232bm_baud_to_divisor(baudrate);
TU_LOG_DRV("CDC FTDI Set BaudRate = %lu, divisor = 0x%04x\r\n", baudrate, divisor);
p_cdc->user_control_cb = complete_cb;
p_cdc->requested_line_coding.bit_rate = baudrate;
TU_ASSERT(ftdi_sio_set_request(p_cdc, FTDI_SIO_SET_BAUD_RATE, divisor,
complete_cb ? cdch_internal_control_complete : NULL, user_data));
return true;
}
static void ftdi_process_config(tuh_xfer_t* xfer) {
uintptr_t const state = xfer->user_data;
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc, );
switch(state) {
// Note may need to read FTDI eeprom
case CONFIG_FTDI_RESET:
TU_ASSERT(ftdi_sio_reset(p_cdc, ftdi_process_config, CONFIG_FTDI_MODEM_CTRL),);
break;
case CONFIG_FTDI_MODEM_CTRL:
#if CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
TU_ASSERT(ftdi_sio_set_modem_ctrl(p_cdc, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM, ftdi_process_config, CONFIG_FTDI_SET_BAUDRATE),);
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
case CONFIG_FTDI_SET_BAUDRATE: {
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT(ftdi_sio_set_baudrate(p_cdc, line_coding.bit_rate, ftdi_process_config, CONFIG_FTDI_SET_DATA),);
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
}
case CONFIG_FTDI_SET_DATA: {
#if 0 // TODO set data format
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT(ftdi_sio_set_data(p_cdc, process_ftdi_config, CONFIG_FTDI_COMPLETE),);
break;
#endif
#endif
TU_ATTR_FALLTHROUGH;
}
case CONFIG_FTDI_COMPLETE:
set_config_complete(p_cdc, idx, itf_num);
break;
default:
break;
}
}
#endif
//--------------------------------------------------------------------+
// CP210x
//--------------------------------------------------------------------+
#if CFG_TUH_CDC_CP210X
enum {
CONFIG_CP210X_IFC_ENABLE = 0,
CONFIG_CP210X_SET_BAUDRATE,
CONFIG_CP210X_SET_LINE_CTL,
CONFIG_CP210X_SET_DTR_RTS,
CONFIG_CP210X_COMPLETE
};
static bool cp210x_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
// CP210x Interface includes 1 vendor interface + 2 bulk endpoints
TU_VERIFY(itf_desc->bInterfaceSubClass == 0 && itf_desc->bInterfaceProtocol == 0 && itf_desc->bNumEndpoints == 2);
TU_VERIFY(sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t) <= max_len);
cdch_interface_t * p_cdc = make_new_itf(daddr, itf_desc);
TU_VERIFY(p_cdc);
TU_LOG_DRV("CP210x opened\r\n");
p_cdc->serial_drid = SERIAL_DRIVER_CP210X;
// endpoint pair
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
// data endpoints expected to be in pairs
return open_ep_stream_pair(p_cdc, desc_ep);
}
static bool cp210x_set_request(cdch_interface_t* p_cdc, uint8_t command, uint16_t value, uint8_t* buffer, uint16_t length, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = TUSB_DIR_OUT
},
.bRequest = command,
.wValue = tu_htole16(value),
.wIndex = p_cdc->bInterfaceNumber,
.wLength = tu_htole16(length)
};
// use usbh enum buf since application variable does not live long enough
uint8_t* enum_buf = NULL;
if (buffer && length > 0) {
enum_buf = usbh_get_enum_buf();
tu_memcpy_s(enum_buf, CFG_TUH_ENUMERATION_BUFSIZE, buffer, length);
}
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = enum_buf,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
static bool cp210x_ifc_enable(cdch_interface_t* p_cdc, uint16_t enabled, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return cp210x_set_request(p_cdc, CP210X_IFC_ENABLE, enabled, NULL, 0, complete_cb, user_data);
}
static bool cp210x_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
// TODO implement later
(void) p_cdc;
(void) line_coding;
(void) complete_cb;
(void) user_data;
return false;
}
static bool cp210x_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_DRV("CDC CP210x Set BaudRate = %lu\r\n", baudrate);
uint32_t baud_le = tu_htole32(baudrate);
p_cdc->user_control_cb = complete_cb;
return cp210x_set_request(p_cdc, CP210X_SET_BAUDRATE, 0, (uint8_t *) &baud_le, 4,
complete_cb ? cdch_internal_control_complete : NULL, user_data);
}
static bool cp210x_set_data_format(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
(void) p_cdc;
(void) stop_bits;
(void) parity;
(void) data_bits;
(void) complete_cb;
(void) user_data;
// TODO not implemented yet
return false;
}
static bool cp210x_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_DRV("CDC CP210x Set Control Line State\r\n");
p_cdc->user_control_cb = complete_cb;
return cp210x_set_request(p_cdc, CP210X_SET_MHS, 0x0300 | line_state, NULL, 0,
complete_cb ? cdch_internal_control_complete : NULL, user_data);
}
static void cp210x_process_config(tuh_xfer_t* xfer) {
uintptr_t const state = xfer->user_data;
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t *p_cdc = get_itf(idx);
TU_ASSERT(p_cdc,);
switch (state) {
case CONFIG_CP210X_IFC_ENABLE:
TU_ASSERT(cp210x_ifc_enable(p_cdc, 1, cp210x_process_config, CONFIG_CP210X_SET_BAUDRATE),);
break;
case CONFIG_CP210X_SET_BAUDRATE: {
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT(cp210x_set_baudrate(p_cdc, line_coding.bit_rate, cp210x_process_config, CONFIG_CP210X_SET_LINE_CTL),);
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
}
case CONFIG_CP210X_SET_LINE_CTL: {
#if defined(CFG_TUH_CDC_LINE_CODING_ON_ENUM) && 0 // skip for now
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
}
case CONFIG_CP210X_SET_DTR_RTS:
#if CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
TU_ASSERT(cp210x_set_modem_ctrl(p_cdc, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM, cp210x_process_config, CONFIG_CP210X_COMPLETE),);
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
case CONFIG_CP210X_COMPLETE:
set_config_complete(p_cdc, idx, itf_num);
break;
default: break;
}
}
#endif
//--------------------------------------------------------------------+
// CH34x (CH340 & CH341)
//--------------------------------------------------------------------+
#if CFG_TUH_CDC_CH34X
static uint8_t ch34x_get_lcr(uint8_t stop_bits, uint8_t parity, uint8_t data_bits);
static uint16_t ch34x_get_divisor_prescaler(uint32_t baval);
//------------- control request -------------//
static bool ch34x_set_request(cdch_interface_t* p_cdc, uint8_t direction, uint8_t request, uint16_t value,
uint16_t index, uint8_t* buffer, uint16_t length, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request_setup = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = direction & 0x01u
},
.bRequest = request,
.wValue = tu_htole16 (value),
.wIndex = tu_htole16 (index),
.wLength = tu_htole16 (length)
};
// use usbh enum buf since application variable does not live long enough
uint8_t* enum_buf = NULL;
if (buffer && length > 0) {
enum_buf = usbh_get_enum_buf();
if (direction == TUSB_DIR_OUT) {
tu_memcpy_s(enum_buf, CFG_TUH_ENUMERATION_BUFSIZE, buffer, length);
}
}
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request_setup,
.buffer = enum_buf,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
static inline bool ch34x_control_out(cdch_interface_t* p_cdc, uint8_t request, uint16_t value, uint16_t index,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return ch34x_set_request(p_cdc, TUSB_DIR_OUT, request, value, index, NULL, 0, complete_cb, user_data);
}
static inline bool ch34x_control_in(cdch_interface_t* p_cdc, uint8_t request, uint16_t value, uint16_t index,
uint8_t* buffer, uint16_t buffersize, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return ch34x_set_request(p_cdc, TUSB_DIR_IN, request, value, index, buffer, buffersize,
complete_cb, user_data);
}
static inline bool ch34x_write_reg(cdch_interface_t* p_cdc, uint16_t reg, uint16_t reg_value, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return ch34x_control_out(p_cdc, CH34X_REQ_WRITE_REG, reg, reg_value, complete_cb, user_data);
}
//static bool ch34x_read_reg_request ( cdch_interface_t* p_cdc, uint16_t reg,
// uint8_t *buffer, uint16_t buffersize, tuh_xfer_cb_t complete_cb, uintptr_t user_data )
//{
// return ch34x_control_in ( p_cdc, CH34X_REQ_READ_REG, reg, 0, buffer, buffersize, complete_cb, user_data );
//}
static bool ch34x_write_reg_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
uint16_t const div_ps = ch34x_get_divisor_prescaler(baudrate);
TU_VERIFY(div_ps);
TU_ASSERT(ch34x_write_reg(p_cdc, CH34X_REG16_DIVISOR_PRESCALER, div_ps,
complete_cb, user_data));
return true;
}
//------------- Driver API -------------//
// internal control complete to update state such as line state, encoding
static void ch34x_control_complete(tuh_xfer_t* xfer) {
// CH34x only has 1 interface and use wIndex as payload and not for bInterfaceNumber
process_internal_control_complete(xfer, 0);
}
static bool ch34x_set_data_format(cdch_interface_t* p_cdc, uint8_t stop_bits, uint8_t parity, uint8_t data_bits,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
p_cdc->requested_line_coding.stop_bits = stop_bits;
p_cdc->requested_line_coding.parity = parity;
p_cdc->requested_line_coding.data_bits = data_bits;
uint8_t const lcr = ch34x_get_lcr(stop_bits, parity, data_bits);
TU_VERIFY(lcr);
TU_ASSERT (ch34x_control_out(p_cdc, CH34X_REQ_WRITE_REG, CH32X_REG16_LCR2_LCR, lcr,
complete_cb ? ch34x_control_complete : NULL, user_data));
return true;
}
static bool ch34x_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
p_cdc->requested_line_coding.bit_rate = baudrate;
p_cdc->user_control_cb = complete_cb;
TU_ASSERT(ch34x_write_reg_baudrate(p_cdc, baudrate,
complete_cb ? ch34x_control_complete : NULL, user_data));
return true;
}
static void ch34x_set_line_coding_stage1_complete(tuh_xfer_t* xfer) {
// CH34x only has 1 interface and use wIndex as payload and not for bInterfaceNumber
uint8_t const itf_num = 0;
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t* p_cdc = get_itf(idx);
TU_ASSERT(p_cdc, );
if (xfer->result == XFER_RESULT_SUCCESS) {
// stage 1 success, continue to stage 2
p_cdc->line_coding.bit_rate = p_cdc->requested_line_coding.bit_rate;
TU_ASSERT(ch34x_set_data_format(p_cdc, p_cdc->requested_line_coding.stop_bits, p_cdc->requested_line_coding.parity,
p_cdc->requested_line_coding.data_bits, ch34x_control_complete, xfer->user_data), );
} else {
// stage 1 failed, notify user
xfer->complete_cb = p_cdc->user_control_cb;
if (xfer->complete_cb) {
xfer->complete_cb(xfer);
}
}
}
// 2 stages: set baudrate (stage1) + set data format (stage2)
static bool ch34x_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
p_cdc->requested_line_coding = *line_coding;
p_cdc->user_control_cb = complete_cb;
if (complete_cb) {
// stage 1 set baudrate
TU_ASSERT(ch34x_write_reg_baudrate(p_cdc, line_coding->bit_rate,
ch34x_set_line_coding_stage1_complete, user_data));
} else {
// sync call
xfer_result_t result;
// stage 1 set baudrate
TU_ASSERT(ch34x_write_reg_baudrate(p_cdc, line_coding->bit_rate, NULL, (uintptr_t) &result));
TU_VERIFY(result == XFER_RESULT_SUCCESS);
p_cdc->line_coding.bit_rate = line_coding->bit_rate;
// stage 2 set data format
TU_ASSERT(ch34x_set_data_format(p_cdc, line_coding->stop_bits, line_coding->parity, line_coding->data_bits,
NULL, (uintptr_t) &result));
TU_VERIFY(result == XFER_RESULT_SUCCESS);
p_cdc->line_coding.stop_bits = line_coding->stop_bits;
p_cdc->line_coding.parity = line_coding->parity;
p_cdc->line_coding.data_bits = line_coding->data_bits;
// update transfer result, user_data is expected to point to xfer_result_t
if (user_data) {
*((xfer_result_t*) user_data) = result;
}
}
return true;
}
static bool ch34x_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
uint8_t control = 0;
if (line_state & CDC_CONTROL_LINE_STATE_RTS) {
control |= CH34X_BIT_RTS;
}
if (line_state & CDC_CONTROL_LINE_STATE_DTR) {
control |= CH34X_BIT_DTR;
}
// CH34x signals are inverted
control = ~control;
p_cdc->user_control_cb = complete_cb;
TU_ASSERT (ch34x_control_out(p_cdc, CH34X_REQ_MODEM_CTRL, control, 0,
complete_cb ? ch34x_control_complete : NULL, user_data));
return true;
}
//------------- Enumeration -------------//
enum {
CONFIG_CH34X_READ_VERSION = 0,
CONFIG_CH34X_SERIAL_INIT,
CONFIG_CH34X_SPECIAL_REG_WRITE,
CONFIG_CH34X_FLOW_CONTROL,
CONFIG_CH34X_MODEM_CONTROL,
CONFIG_CH34X_COMPLETE
};
static bool ch34x_open(uint8_t daddr, tusb_desc_interface_t const* itf_desc, uint16_t max_len) {
// CH34x Interface includes 1 vendor interface + 2 bulk + 1 interrupt endpoints
TU_VERIFY (itf_desc->bNumEndpoints == 3);
TU_VERIFY (sizeof(tusb_desc_interface_t) + 3 * sizeof(tusb_desc_endpoint_t) <= max_len);
cdch_interface_t* p_cdc = make_new_itf(daddr, itf_desc);
TU_VERIFY (p_cdc);
TU_LOG_DRV ("CH34x opened\r\n");
p_cdc->serial_drid = SERIAL_DRIVER_CH34X;
tusb_desc_endpoint_t const* desc_ep = (tusb_desc_endpoint_t const*) tu_desc_next(itf_desc);
// data endpoints expected to be in pairs
TU_ASSERT(open_ep_stream_pair(p_cdc, desc_ep));
desc_ep += 2;
// Interrupt endpoint: not used for now
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(desc_ep) &&
TUSB_XFER_INTERRUPT == desc_ep->bmAttributes.xfer);
TU_ASSERT(tuh_edpt_open(daddr, desc_ep));
p_cdc->ep_notif = desc_ep->bEndpointAddress;
return true;
}
static void ch34x_process_config(tuh_xfer_t* xfer) {
// CH34x only has 1 interface and use wIndex as payload and not for bInterfaceNumber
uint8_t const itf_num = 0;
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t* p_cdc = get_itf(idx);
uintptr_t const state = xfer->user_data;
uint8_t buffer[2]; // TODO remove
TU_ASSERT (p_cdc,);
TU_ASSERT (xfer->result == XFER_RESULT_SUCCESS,);
switch (state) {
case CONFIG_CH34X_READ_VERSION:
TU_LOG_DRV("[%u] CDCh CH34x attempt to read Chip Version\r\n", p_cdc->daddr);
TU_ASSERT (ch34x_control_in(p_cdc, CH34X_REQ_READ_VERSION, 0, 0, buffer, 2, ch34x_process_config, CONFIG_CH34X_SERIAL_INIT),);
break;
case CONFIG_CH34X_SERIAL_INIT: {
// handle version read data, set CH34x line coding (incl. baudrate)
uint8_t const version = xfer->buffer[0];
TU_LOG_DRV("[%u] CDCh CH34x Chip Version = %02x\r\n", p_cdc->daddr, version);
// only versions >= 0x30 are tested, below 0x30 seems having other programming, see drivers from WCH vendor, Linux kernel and FreeBSD
TU_ASSERT (version >= 0x30,);
// init CH34x with line coding
cdc_line_coding_t const line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM_CH34X;
uint16_t const div_ps = ch34x_get_divisor_prescaler(line_coding.bit_rate);
TU_ASSERT(div_ps, );
uint8_t const lcr = ch34x_get_lcr(line_coding.stop_bits, line_coding.parity, line_coding.data_bits);
TU_ASSERT(lcr, );
TU_ASSERT (ch34x_control_out(p_cdc, CH34X_REQ_SERIAL_INIT, tu_u16(lcr, 0x9c), div_ps,
ch34x_process_config, CONFIG_CH34X_SPECIAL_REG_WRITE),);
break;
}
case CONFIG_CH34X_SPECIAL_REG_WRITE:
// overtake line coding and do special reg write, purpose unknown, overtaken from WCH driver
p_cdc->line_coding = ((cdc_line_coding_t) CFG_TUH_CDC_LINE_CODING_ON_ENUM_CH34X);
TU_ASSERT (ch34x_write_reg(p_cdc, TU_U16(CH341_REG_0x0F, CH341_REG_0x2C), 0x0007, ch34x_process_config, CONFIG_CH34X_FLOW_CONTROL),);
break;
case CONFIG_CH34X_FLOW_CONTROL:
// no hardware flow control
TU_ASSERT (ch34x_write_reg(p_cdc, TU_U16(CH341_REG_0x27, CH341_REG_0x27), 0x0000, ch34x_process_config, CONFIG_CH34X_MODEM_CONTROL),);
break;
case CONFIG_CH34X_MODEM_CONTROL:
// !always! set modem controls RTS/DTR (CH34x has no reset state after CH34X_REQ_SERIAL_INIT)
TU_ASSERT (ch34x_set_modem_ctrl(p_cdc, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM, ch34x_process_config, CONFIG_CH34X_COMPLETE),);
break;
case CONFIG_CH34X_COMPLETE:
set_config_complete(p_cdc, idx, itf_num);
break;
default:
TU_ASSERT (false,);
break;
}
}
//------------- CH34x helper -------------//
// calculate divisor and prescaler for baudrate, return it as 16-bit combined value
static uint16_t ch34x_get_divisor_prescaler(uint32_t baval) {
uint8_t a;
uint8_t b;
uint32_t c;
TU_VERIFY(baval != 0 && baval <= 2000000, 0);
switch (baval) {
case 921600:
a = 0xf3;
b = 7;
break;
case 307200:
a = 0xd9;
b = 7;
break;
default:
if (baval > 6000000 / 255) {
b = 3;
c = 6000000;
} else if (baval > 750000 / 255) {
b = 2;
c = 750000;
} else if (baval > 93750 / 255) {
b = 1;
c = 93750;
} else {
b = 0;
c = 11719;
}
a = (uint8_t) (c / baval);
if (a == 0 || a == 0xFF) {
return 0;
}
if ((c / a - baval) > (baval - c / (a + 1))) {
a++;
}
a = (uint8_t) (256 - a);
break;
}
// reg divisor = a, reg prescaler = b
// According to linux code we need to set bit 7 of UCHCOM_REG_BPS_PRE,
// otherwise the chip will buffer data.
return (uint16_t) ((uint16_t)a << 8 | 0x80 | b);
}
// calculate lcr value from data coding
static uint8_t ch34x_get_lcr(uint8_t stop_bits, uint8_t parity, uint8_t data_bits) {
uint8_t lcr = CH34X_LCR_ENABLE_RX | CH34X_LCR_ENABLE_TX;
TU_VERIFY(data_bits >= 5 && data_bits <= 8, 0);
lcr |= (uint8_t) (data_bits - 5);
switch(parity) {
case CDC_LINE_CODING_PARITY_NONE:
break;
case CDC_LINE_CODING_PARITY_ODD:
lcr |= CH34X_LCR_ENABLE_PAR;
break;
case CDC_LINE_CODING_PARITY_EVEN:
lcr |= CH34X_LCR_ENABLE_PAR | CH34X_LCR_PAR_EVEN;
break;
case CDC_LINE_CODING_PARITY_MARK:
lcr |= CH34X_LCR_ENABLE_PAR | CH34X_LCR_MARK_SPACE;
break;
case CDC_LINE_CODING_PARITY_SPACE:
lcr |= CH34X_LCR_ENABLE_PAR | CH34X_LCR_MARK_SPACE | CH34X_LCR_PAR_EVEN;
break;
default: break;
}
// 1.5 stop bits not supported
TU_VERIFY(stop_bits != CDC_LINE_CODING_STOP_BITS_1_5, 0);
if (stop_bits == CDC_LINE_CODING_STOP_BITS_2) {
lcr |= CH34X_LCR_STOP_BITS_2;
}
return lcr;
}
#endif // CFG_TUH_CDC_CH34X
#endif

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://gitlife.ru/oschina-mirror/notrynohigh-BabyOS.git
git@gitlife.ru:oschina-mirror/notrynohigh-BabyOS.git
oschina-mirror
notrynohigh-BabyOS
notrynohigh-BabyOS
master