Слияние кода завершено, страница обновится автоматически
/*!
* \file radio.c
*
* \brief Radio driver API definition
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* \endcode
*
* \author Miguel Luis ( Semtech )
*
* \author Gregory Cristian ( Semtech )
*/
#include <math.h>
#include <string.h>
#include "utilities.h"
#include "timer.h"
#include "delay.h"
#include "radio.h"
#include "sx126x.h"
#include "sx126x-board.h"
#include "board.h"
/*!
* \brief Initializes the radio
*
* \param [IN] events Structure containing the driver callback functions
*/
void RadioInit( RadioEvents_t *events );
/*!
* Return current radio status
*
* \param status Radio status.[RF_IDLE, RF_RX_RUNNING, RF_TX_RUNNING]
*/
RadioState_t RadioGetStatus( void );
/*!
* \brief Configures the radio with the given modem
*
* \param [IN] modem Modem to be used [0: FSK, 1: LoRa]
*/
void RadioSetModem( RadioModems_t modem );
/*!
* \brief Sets the channel frequency
*
* \param [IN] freq Channel RF frequency
*/
void RadioSetChannel( uint32_t freq );
/*!
* \brief Checks if the channel is free for the given time
*
* \remark The FSK modem is always used for this task as we can select the Rx bandwidth at will.
*
* \param [IN] freq Channel RF frequency in Hertz
* \param [IN] rxBandwidth Rx bandwidth in Hertz
* \param [IN] rssiThresh RSSI threshold in dBm
* \param [IN] maxCarrierSenseTime Max time in milliseconds while the RSSI is measured
*
* \retval isFree [true: Channel is free, false: Channel is not free]
*/
bool RadioIsChannelFree( uint32_t freq, uint32_t rxBandwidth, int16_t rssiThresh, uint32_t maxCarrierSenseTime );
/*!
* \brief Generates a 32 bits random value based on the RSSI readings
*
* \remark This function sets the radio in LoRa modem mode and disables
* all interrupts.
* After calling this function either Radio.SetRxConfig or
* Radio.SetTxConfig functions must be called.
*
* \retval randomValue 32 bits random value
*/
uint32_t RadioRandom( void );
/*!
* \brief Sets the reception parameters
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] bandwidth Sets the bandwidth
* FSK : >= 2600 and <= 250000 Hz
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] bandwidthAfc Sets the AFC Bandwidth (FSK only)
* FSK : >= 2600 and <= 250000 Hz
* LoRa: N/A ( set to 0 )
* \param [IN] preambleLen Sets the Preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] symbTimeout Sets the RxSingle timeout value
* FSK : timeout in number of bytes
* LoRa: timeout in symbols
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] payloadLen Sets payload length when fixed length is used
* \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON]
* \param [IN] FreqHopOn Enables disables the intra-packet frequency hopping
* FSK : N/A ( set to 0 )
* LoRa: [0: OFF, 1: ON]
* \param [IN] HopPeriod Number of symbols between each hop
* FSK : N/A ( set to 0 )
* LoRa: Number of symbols
* \param [IN] iqInverted Inverts IQ signals (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [0: not inverted, 1: inverted]
* \param [IN] rxContinuous Sets the reception in continuous mode
* [false: single mode, true: continuous mode]
*/
void RadioSetRxConfig( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint32_t bandwidthAfc, uint16_t preambleLen,
uint16_t symbTimeout, bool fixLen,
uint8_t payloadLen,
bool crcOn, bool FreqHopOn, uint8_t HopPeriod,
bool iqInverted, bool rxContinuous );
/*!
* \brief Sets the transmission parameters
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] power Sets the output power [dBm]
* \param [IN] fdev Sets the frequency deviation (FSK only)
* FSK : [Hz]
* LoRa: 0
* \param [IN] bandwidth Sets the bandwidth (LoRa only)
* FSK : 0
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] preambleLen Sets the preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] crcOn Enables disables the CRC [0: OFF, 1: ON]
* \param [IN] FreqHopOn Enables disables the intra-packet frequency hopping
* FSK : N/A ( set to 0 )
* LoRa: [0: OFF, 1: ON]
* \param [IN] HopPeriod Number of symbols between each hop
* FSK : N/A ( set to 0 )
* LoRa: Number of symbols
* \param [IN] iqInverted Inverts IQ signals (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [0: not inverted, 1: inverted]
* \param [IN] timeout Transmission timeout [ms]
*/
void RadioSetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev,
uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint16_t preambleLen,
bool fixLen, bool crcOn, bool FreqHopOn,
uint8_t HopPeriod, bool iqInverted, uint32_t timeout );
/*!
* \brief Checks if the given RF frequency is supported by the hardware
*
* \param [IN] frequency RF frequency to be checked
* \retval isSupported [true: supported, false: unsupported]
*/
bool RadioCheckRfFrequency( uint32_t frequency );
/*!
* \brief Computes the packet time on air in ms for the given payload
*
* \Remark Can only be called once SetRxConfig or SetTxConfig have been called
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] bandwidth Sets the bandwidth
* FSK : >= 2600 and <= 250000 Hz
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] preambleLen Sets the Preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] payloadLen Sets payload length when fixed length is used
* \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON]
*
* \retval airTime Computed airTime (ms) for the given packet payload length
*/
uint32_t RadioTimeOnAir( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn );
/*!
* \brief Sends the buffer of size. Prepares the packet to be sent and sets
* the radio in transmission
*
* \param [IN]: buffer Buffer pointer
* \param [IN]: size Buffer size
*/
void RadioSend( uint8_t *buffer, uint8_t size );
/*!
* \brief Sets the radio in sleep mode
*/
void RadioSleep( void );
/*!
* \brief Sets the radio in standby mode
*/
void RadioStandby( void );
/*!
* \brief Sets the radio in reception mode for the given time
* \param [IN] timeout Reception timeout [ms]
* [0: continuous, others timeout]
*/
void RadioRx( uint32_t timeout );
/*!
* \brief Start a Channel Activity Detection
*/
void RadioStartCad( void );
/*!
* \brief Sets the radio in continuous wave transmission mode
*
* \param [IN]: freq Channel RF frequency
* \param [IN]: power Sets the output power [dBm]
* \param [IN]: time Transmission mode timeout [s]
*/
void RadioSetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time );
/*!
* \brief Reads the current RSSI value
*
* \retval rssiValue Current RSSI value in [dBm]
*/
int16_t RadioRssi( RadioModems_t modem );
/*!
* \brief Writes the radio register at the specified address
*
* \param [IN]: addr Register address
* \param [IN]: data New register value
*/
void RadioWrite( uint32_t addr, uint8_t data );
/*!
* \brief Reads the radio register at the specified address
*
* \param [IN]: addr Register address
* \retval data Register value
*/
uint8_t RadioRead( uint32_t addr );
/*!
* \brief Writes multiple radio registers starting at address
*
* \param [IN] addr First Radio register address
* \param [IN] buffer Buffer containing the new register's values
* \param [IN] size Number of registers to be written
*/
void RadioWriteBuffer( uint32_t addr, uint8_t *buffer, uint8_t size );
/*!
* \brief Reads multiple radio registers starting at address
*
* \param [IN] addr First Radio register address
* \param [OUT] buffer Buffer where to copy the registers data
* \param [IN] size Number of registers to be read
*/
void RadioReadBuffer( uint32_t addr, uint8_t *buffer, uint8_t size );
/*!
* \brief Sets the maximum payload length.
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] max Maximum payload length in bytes
*/
void RadioSetMaxPayloadLength( RadioModems_t modem, uint8_t max );
/*!
* \brief Sets the network to public or private. Updates the sync byte.
*
* \remark Applies to LoRa modem only
*
* \param [IN] enable if true, it enables a public network
*/
void RadioSetPublicNetwork( bool enable );
/*!
* \brief Gets the time required for the board plus radio to get out of sleep.[ms]
*
* \retval time Radio plus board wakeup time in ms.
*/
uint32_t RadioGetWakeupTime( void );
/*!
* \brief Process radio irq
*/
void RadioIrqProcess( void );
/*!
* \brief Sets the radio in reception mode with Max LNA gain for the given time
* \param [IN] timeout Reception timeout [ms]
* [0: continuous, others timeout]
*/
void RadioRxBoosted( uint32_t timeout );
/*!
* \brief Sets the Rx duty cycle management parameters
*
* \param [in] rxTime Structure describing reception timeout value
* \param [in] sleepTime Structure describing sleep timeout value
*/
void RadioSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime );
/*!
* \brief Add a register to the retention list
*
* \param [in] registerAddress The address of the register to be kept in retention
*/
void RadioAddRegisterToRetentionList( uint16_t registerAddress );
/*!
* Radio driver structure initialization
*/
const struct Radio_s Radio =
{
RadioInit,
RadioGetStatus,
RadioSetModem,
RadioSetChannel,
RadioIsChannelFree,
RadioRandom,
RadioSetRxConfig,
RadioSetTxConfig,
RadioCheckRfFrequency,
RadioTimeOnAir,
RadioSend,
RadioSleep,
RadioStandby,
RadioRx,
RadioStartCad,
RadioSetTxContinuousWave,
RadioRssi,
RadioWrite,
RadioRead,
RadioWriteBuffer,
RadioReadBuffer,
RadioSetMaxPayloadLength,
RadioSetPublicNetwork,
RadioGetWakeupTime,
RadioIrqProcess,
// Available on SX126x only
RadioRxBoosted,
RadioSetRxDutyCycle
};
/*
* Local types definition
*/
/*!
* FSK bandwidth definition
*/
typedef struct
{
uint32_t bandwidth;
uint8_t RegValue;
}FskBandwidth_t;
/*!
* Precomputed FSK bandwidth registers values
*/
const FskBandwidth_t FskBandwidths[] =
{
{ 4800 , 0x1F },
{ 5800 , 0x17 },
{ 7300 , 0x0F },
{ 9700 , 0x1E },
{ 11700 , 0x16 },
{ 14600 , 0x0E },
{ 19500 , 0x1D },
{ 23400 , 0x15 },
{ 29300 , 0x0D },
{ 39000 , 0x1C },
{ 46900 , 0x14 },
{ 58600 , 0x0C },
{ 78200 , 0x1B },
{ 93800 , 0x13 },
{ 117300, 0x0B },
{ 156200, 0x1A },
{ 187200, 0x12 },
{ 234300, 0x0A },
{ 312000, 0x19 },
{ 373600, 0x11 },
{ 467000, 0x09 },
{ 500000, 0x00 }, // Invalid Bandwidth
};
const RadioLoRaBandwidths_t Bandwidths[] = { LORA_BW_125, LORA_BW_250, LORA_BW_500 };
uint8_t MaxPayloadLength = 0xFF;
uint32_t TxTimeout = 0;
uint32_t RxTimeout = 0;
bool RxContinuous = false;
PacketStatus_t RadioPktStatus;
uint8_t RadioRxPayload[255];
bool IrqFired = false;
/*
* SX126x DIO IRQ callback functions prototype
*/
/*!
* \brief DIO 0 IRQ callback
*/
void RadioOnDioIrq( void* context );
/*!
* \brief Tx timeout timer callback
*/
void RadioOnTxTimeoutIrq( void* context );
/*!
* \brief Rx timeout timer callback
*/
void RadioOnRxTimeoutIrq( void* context );
/*
* Private global variables
*/
/*!
* Holds the current network type for the radio
*/
typedef struct
{
bool Previous;
bool Current;
}RadioPublicNetwork_t;
static RadioPublicNetwork_t RadioPublicNetwork = { false };
/*!
* Radio callbacks variable
*/
static RadioEvents_t* RadioEvents;
/*
* Public global variables
*/
/*!
* Radio hardware and global parameters
*/
SX126x_t SX126x;
/*!
* Tx and Rx timers
*/
TimerEvent_t TxTimeoutTimer;
TimerEvent_t RxTimeoutTimer;
/*!
* Returns the known FSK bandwidth registers value
*
* \param [IN] bandwidth Bandwidth value in Hz
* \retval regValue Bandwidth register value.
*/
static uint8_t RadioGetFskBandwidthRegValue( uint32_t bandwidth )
{
uint8_t i;
if( bandwidth == 0 )
{
return( 0x1F );
}
for( i = 0; i < ( sizeof( FskBandwidths ) / sizeof( FskBandwidth_t ) ) - 1; i++ )
{
if( ( bandwidth >= FskBandwidths[i].bandwidth ) && ( bandwidth < FskBandwidths[i + 1].bandwidth ) )
{
return FskBandwidths[i+1].RegValue;
}
}
// ERROR: Value not found
while( 1 );
}
void RadioInit( RadioEvents_t *events )
{
RadioEvents = events;
SX126xInit( RadioOnDioIrq );
SX126xSetStandby( STDBY_RC );
SX126xSetRegulatorMode( USE_DCDC );
SX126xSetBufferBaseAddress( 0x00, 0x00 );
SX126xSetTxParams( 0, RADIO_RAMP_200_US );
SX126xSetDioIrqParams( IRQ_RADIO_ALL, IRQ_RADIO_ALL, IRQ_RADIO_NONE, IRQ_RADIO_NONE );
// Add registers to the retention list (4 is the maximum possible number)
RadioAddRegisterToRetentionList( REG_RX_GAIN );
RadioAddRegisterToRetentionList( REG_TX_MODULATION );
// Initialize driver timeout timers
TimerInit( &TxTimeoutTimer, RadioOnTxTimeoutIrq );
TimerInit( &RxTimeoutTimer, RadioOnRxTimeoutIrq );
IrqFired = false;
}
RadioState_t RadioGetStatus( void )
{
switch( SX126xGetOperatingMode( ) )
{
case MODE_TX:
return RF_TX_RUNNING;
case MODE_RX:
return RF_RX_RUNNING;
case MODE_CAD:
return RF_CAD;
default:
return RF_IDLE;
}
}
void RadioSetModem( RadioModems_t modem )
{
switch( modem )
{
default:
case MODEM_FSK:
SX126xSetPacketType( PACKET_TYPE_GFSK );
// When switching to GFSK mode the LoRa SyncWord register value is reset
// Thus, we also reset the RadioPublicNetwork variable
RadioPublicNetwork.Current = false;
break;
case MODEM_LORA:
SX126xSetPacketType( PACKET_TYPE_LORA );
// Public/Private network register is reset when switching modems
if( RadioPublicNetwork.Current != RadioPublicNetwork.Previous )
{
RadioPublicNetwork.Current = RadioPublicNetwork.Previous;
RadioSetPublicNetwork( RadioPublicNetwork.Current );
}
break;
}
}
void RadioSetChannel( uint32_t freq )
{
SX126xSetRfFrequency( freq );
}
bool RadioIsChannelFree( uint32_t freq, uint32_t rxBandwidth, int16_t rssiThresh, uint32_t maxCarrierSenseTime )
{
bool status = true;
int16_t rssi = 0;
uint32_t carrierSenseTime = 0;
RadioSetModem( MODEM_FSK );
RadioSetChannel( freq );
// Set Rx bandwidth. Other parameters are not used.
RadioSetRxConfig( MODEM_FSK, rxBandwidth, 600, 0, rxBandwidth, 3, 0, false,
0, false, 0, 0, false, true );
RadioRx( 0 );
DelayMs( 1 );
carrierSenseTime = TimerGetCurrentTime( );
// Perform carrier sense for maxCarrierSenseTime
while( TimerGetElapsedTime( carrierSenseTime ) < maxCarrierSenseTime )
{
rssi = RadioRssi( MODEM_FSK );
if( rssi > rssiThresh )
{
status = false;
break;
}
}
RadioSleep( );
return status;
}
uint32_t RadioRandom( void )
{
uint32_t rnd = 0;
/*
* Radio setup for random number generation
*/
// Set LoRa modem ON
RadioSetModem( MODEM_LORA );
// Disable LoRa modem interrupts
SX126xSetDioIrqParams( IRQ_RADIO_NONE, IRQ_RADIO_NONE, IRQ_RADIO_NONE, IRQ_RADIO_NONE );
rnd = SX126xGetRandom( );
return rnd;
}
void RadioSetRxConfig( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint32_t bandwidthAfc, uint16_t preambleLen,
uint16_t symbTimeout, bool fixLen,
uint8_t payloadLen,
bool crcOn, bool freqHopOn, uint8_t hopPeriod,
bool iqInverted, bool rxContinuous )
{
RxContinuous = rxContinuous;
if( rxContinuous == true )
{
symbTimeout = 0;
}
if( fixLen == true )
{
MaxPayloadLength = payloadLen;
}
else
{
MaxPayloadLength = 0xFF;
}
switch( modem )
{
case MODEM_FSK:
SX126xSetStopRxTimerOnPreambleDetect( false );
SX126x.ModulationParams.PacketType = PACKET_TYPE_GFSK;
SX126x.ModulationParams.Params.Gfsk.BitRate = datarate;
SX126x.ModulationParams.Params.Gfsk.ModulationShaping = MOD_SHAPING_G_BT_1;
SX126x.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue( bandwidth << 1 ); // SX126x badwidth is double sided
SX126x.PacketParams.PacketType = PACKET_TYPE_GFSK;
SX126x.PacketParams.Params.Gfsk.PreambleLength = ( preambleLen << 3 ); // convert byte into bit
SX126x.PacketParams.Params.Gfsk.PreambleMinDetect = RADIO_PREAMBLE_DETECTOR_08_BITS;
SX126x.PacketParams.Params.Gfsk.SyncWordLength = 3 << 3; // convert byte into bit
SX126x.PacketParams.Params.Gfsk.AddrComp = RADIO_ADDRESSCOMP_FILT_OFF;
SX126x.PacketParams.Params.Gfsk.HeaderType = ( fixLen == true ) ? RADIO_PACKET_FIXED_LENGTH : RADIO_PACKET_VARIABLE_LENGTH;
SX126x.PacketParams.Params.Gfsk.PayloadLength = MaxPayloadLength;
if( crcOn == true )
{
SX126x.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_2_BYTES_CCIT;
}
else
{
SX126x.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_OFF;
}
SX126x.PacketParams.Params.Gfsk.DcFree = RADIO_DC_FREEWHITENING;
RadioStandby( );
RadioSetModem( ( SX126x.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
SX126xSetModulationParams( &SX126x.ModulationParams );
SX126xSetPacketParams( &SX126x.PacketParams );
SX126xSetSyncWord( ( uint8_t[] ){ 0xC1, 0x94, 0xC1, 0x00, 0x00, 0x00, 0x00, 0x00 } );
SX126xSetWhiteningSeed( 0x01FF );
RxTimeout = ( uint32_t )symbTimeout * 8000UL / datarate;
break;
case MODEM_LORA:
SX126xSetStopRxTimerOnPreambleDetect( false );
SX126x.ModulationParams.PacketType = PACKET_TYPE_LORA;
SX126x.ModulationParams.Params.LoRa.SpreadingFactor = ( RadioLoRaSpreadingFactors_t )datarate;
SX126x.ModulationParams.Params.LoRa.Bandwidth = Bandwidths[bandwidth];
SX126x.ModulationParams.Params.LoRa.CodingRate = ( RadioLoRaCodingRates_t )coderate;
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x01;
}
else
{
SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x00;
}
SX126x.PacketParams.PacketType = PACKET_TYPE_LORA;
if( ( SX126x.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF5 ) ||
( SX126x.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF6 ) )
{
if( preambleLen < 12 )
{
SX126x.PacketParams.Params.LoRa.PreambleLength = 12;
}
else
{
SX126x.PacketParams.Params.LoRa.PreambleLength = preambleLen;
}
}
else
{
SX126x.PacketParams.Params.LoRa.PreambleLength = preambleLen;
}
SX126x.PacketParams.Params.LoRa.HeaderType = ( RadioLoRaPacketLengthsMode_t )fixLen;
SX126x.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength;
SX126x.PacketParams.Params.LoRa.CrcMode = ( RadioLoRaCrcModes_t )crcOn;
SX126x.PacketParams.Params.LoRa.InvertIQ = ( RadioLoRaIQModes_t )iqInverted;
RadioStandby( );
RadioSetModem( ( SX126x.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
SX126xSetModulationParams( &SX126x.ModulationParams );
SX126xSetPacketParams( &SX126x.PacketParams );
SX126xSetLoRaSymbNumTimeout( symbTimeout );
// WORKAROUND - Optimizing the Inverted IQ Operation, see DS_SX1261-2_V1.2 datasheet chapter 15.4
if( SX126x.PacketParams.Params.LoRa.InvertIQ == LORA_IQ_INVERTED )
{
SX126xWriteRegister( REG_IQ_POLARITY, SX126xReadRegister( REG_IQ_POLARITY ) & ~( 1 << 2 ) );
}
else
{
SX126xWriteRegister( REG_IQ_POLARITY, SX126xReadRegister( REG_IQ_POLARITY ) | ( 1 << 2 ) );
}
// WORKAROUND END
// Timeout Max, Timeout handled directly in SetRx function
RxTimeout = 0xFFFF;
break;
}
}
void RadioSetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev,
uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint16_t preambleLen,
bool fixLen, bool crcOn, bool freqHopOn,
uint8_t hopPeriod, bool iqInverted, uint32_t timeout )
{
switch( modem )
{
case MODEM_FSK:
SX126x.ModulationParams.PacketType = PACKET_TYPE_GFSK;
SX126x.ModulationParams.Params.Gfsk.BitRate = datarate;
SX126x.ModulationParams.Params.Gfsk.ModulationShaping = MOD_SHAPING_G_BT_1;
SX126x.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue( bandwidth << 1 ); // SX126x badwidth is double sided
SX126x.ModulationParams.Params.Gfsk.Fdev = fdev;
SX126x.PacketParams.PacketType = PACKET_TYPE_GFSK;
SX126x.PacketParams.Params.Gfsk.PreambleLength = ( preambleLen << 3 ); // convert byte into bit
SX126x.PacketParams.Params.Gfsk.PreambleMinDetect = RADIO_PREAMBLE_DETECTOR_08_BITS;
SX126x.PacketParams.Params.Gfsk.SyncWordLength = 3 << 3 ; // convert byte into bit
SX126x.PacketParams.Params.Gfsk.AddrComp = RADIO_ADDRESSCOMP_FILT_OFF;
SX126x.PacketParams.Params.Gfsk.HeaderType = ( fixLen == true ) ? RADIO_PACKET_FIXED_LENGTH : RADIO_PACKET_VARIABLE_LENGTH;
if( crcOn == true )
{
SX126x.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_2_BYTES_CCIT;
}
else
{
SX126x.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_OFF;
}
SX126x.PacketParams.Params.Gfsk.DcFree = RADIO_DC_FREEWHITENING;
RadioStandby( );
RadioSetModem( ( SX126x.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
SX126xSetModulationParams( &SX126x.ModulationParams );
SX126xSetPacketParams( &SX126x.PacketParams );
SX126xSetSyncWord( ( uint8_t[] ){ 0xC1, 0x94, 0xC1, 0x00, 0x00, 0x00, 0x00, 0x00 } );
SX126xSetWhiteningSeed( 0x01FF );
break;
case MODEM_LORA:
SX126x.ModulationParams.PacketType = PACKET_TYPE_LORA;
SX126x.ModulationParams.Params.LoRa.SpreadingFactor = ( RadioLoRaSpreadingFactors_t ) datarate;
SX126x.ModulationParams.Params.LoRa.Bandwidth = Bandwidths[bandwidth];
SX126x.ModulationParams.Params.LoRa.CodingRate= ( RadioLoRaCodingRates_t )coderate;
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x01;
}
else
{
SX126x.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x00;
}
SX126x.PacketParams.PacketType = PACKET_TYPE_LORA;
if( ( SX126x.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF5 ) ||
( SX126x.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF6 ) )
{
if( preambleLen < 12 )
{
SX126x.PacketParams.Params.LoRa.PreambleLength = 12;
}
else
{
SX126x.PacketParams.Params.LoRa.PreambleLength = preambleLen;
}
}
else
{
SX126x.PacketParams.Params.LoRa.PreambleLength = preambleLen;
}
SX126x.PacketParams.Params.LoRa.HeaderType = ( RadioLoRaPacketLengthsMode_t )fixLen;
SX126x.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength;
SX126x.PacketParams.Params.LoRa.CrcMode = ( RadioLoRaCrcModes_t )crcOn;
SX126x.PacketParams.Params.LoRa.InvertIQ = ( RadioLoRaIQModes_t )iqInverted;
RadioStandby( );
RadioSetModem( ( SX126x.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
SX126xSetModulationParams( &SX126x.ModulationParams );
SX126xSetPacketParams( &SX126x.PacketParams );
break;
}
// WORKAROUND - Modulation Quality with 500 kHz LoRa Bandwidth, see DS_SX1261-2_V1.2 datasheet chapter 15.1
if( ( modem == MODEM_LORA ) && ( SX126x.ModulationParams.Params.LoRa.Bandwidth == LORA_BW_500 ) )
{
SX126xWriteRegister( REG_TX_MODULATION, SX126xReadRegister( REG_TX_MODULATION ) & ~( 1 << 2 ) );
}
else
{
SX126xWriteRegister( REG_TX_MODULATION, SX126xReadRegister( REG_TX_MODULATION ) | ( 1 << 2 ) );
}
// WORKAROUND END
SX126xSetRfTxPower( power );
TxTimeout = timeout;
}
bool RadioCheckRfFrequency( uint32_t frequency )
{
return true;
}
static uint32_t RadioGetLoRaBandwidthInHz( RadioLoRaBandwidths_t bw )
{
uint32_t bandwidthInHz = 0;
switch( bw )
{
case LORA_BW_007:
bandwidthInHz = 7812UL;
break;
case LORA_BW_010:
bandwidthInHz = 10417UL;
break;
case LORA_BW_015:
bandwidthInHz = 15625UL;
break;
case LORA_BW_020:
bandwidthInHz = 20833UL;
break;
case LORA_BW_031:
bandwidthInHz = 31250UL;
break;
case LORA_BW_041:
bandwidthInHz = 41667UL;
break;
case LORA_BW_062:
bandwidthInHz = 62500UL;
break;
case LORA_BW_125:
bandwidthInHz = 125000UL;
break;
case LORA_BW_250:
bandwidthInHz = 250000UL;
break;
case LORA_BW_500:
bandwidthInHz = 500000UL;
break;
}
return bandwidthInHz;
}
static uint32_t RadioGetGfskTimeOnAirNumerator( uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
const RadioAddressComp_t addrComp = RADIO_ADDRESSCOMP_FILT_OFF;
const uint8_t syncWordLength = 3;
return ( preambleLen << 3 ) +
( ( fixLen == false ) ? 8 : 0 ) +
( syncWordLength << 3 ) +
( ( payloadLen +
( addrComp == RADIO_ADDRESSCOMP_FILT_OFF ? 0 : 1 ) +
( ( crcOn == true ) ? 2 : 0 )
) << 3
);
}
static uint32_t RadioGetLoRaTimeOnAirNumerator( uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
int32_t crDenom = coderate + 4;
bool lowDatareOptimize = false;
// Ensure that the preamble length is at least 12 symbols when using SF5 or
// SF6
if( ( datarate == 5 ) || ( datarate == 6 ) )
{
if( preambleLen < 12 )
{
preambleLen = 12;
}
}
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
lowDatareOptimize = true;
}
int32_t ceilDenominator;
int32_t ceilNumerator = ( payloadLen << 3 ) +
( crcOn ? 16 : 0 ) -
( 4 * datarate ) +
( fixLen ? 0 : 20 );
if( datarate <= 6 )
{
ceilDenominator = 4 * datarate;
}
else
{
ceilNumerator += 8;
if( lowDatareOptimize == true )
{
ceilDenominator = 4 * ( datarate - 2 );
}
else
{
ceilDenominator = 4 * datarate;
}
}
if( ceilNumerator < 0 )
{
ceilNumerator = 0;
}
// Perform integral ceil()
int32_t intermediate =
( ( ceilNumerator + ceilDenominator - 1 ) / ceilDenominator ) * crDenom + preambleLen + 12;
if( datarate <= 6 )
{
intermediate += 2;
}
return ( uint32_t )( ( 4 * intermediate + 1 ) * ( 1 << ( datarate - 2 ) ) );
}
uint32_t RadioTimeOnAir( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
uint32_t numerator = 0;
uint32_t denominator = 1;
switch( modem )
{
case MODEM_FSK:
{
numerator = 1000U * RadioGetGfskTimeOnAirNumerator( datarate, coderate,
preambleLen, fixLen,
payloadLen, crcOn );
denominator = datarate;
}
break;
case MODEM_LORA:
{
numerator = 1000U * RadioGetLoRaTimeOnAirNumerator( bandwidth, datarate,
coderate, preambleLen,
fixLen, payloadLen, crcOn );
denominator = RadioGetLoRaBandwidthInHz( Bandwidths[bandwidth] );
}
break;
}
// Perform integral ceil()
return ( numerator + denominator - 1 ) / denominator;
}
void RadioSend( uint8_t *buffer, uint8_t size )
{
SX126xSetDioIrqParams( IRQ_TX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_TX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_NONE,
IRQ_RADIO_NONE );
if( SX126xGetPacketType( ) == PACKET_TYPE_LORA )
{
SX126x.PacketParams.Params.LoRa.PayloadLength = size;
}
else
{
SX126x.PacketParams.Params.Gfsk.PayloadLength = size;
}
SX126xSetPacketParams( &SX126x.PacketParams );
SX126xSendPayload( buffer, size, 0 );
TimerSetValue( &TxTimeoutTimer, TxTimeout );
TimerStart( &TxTimeoutTimer );
}
void RadioSleep( void )
{
SleepParams_t params = { 0 };
params.Fields.WarmStart = 1;
SX126xSetSleep( params );
DelayMs( 2 );
}
void RadioStandby( void )
{
SX126xSetStandby( STDBY_RC );
}
void RadioRx( uint32_t timeout )
{
SX126xSetDioIrqParams( IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_NONE,
IRQ_RADIO_NONE );
if( timeout != 0 )
{
TimerSetValue( &RxTimeoutTimer, timeout );
TimerStart( &RxTimeoutTimer );
}
if( RxContinuous == true )
{
SX126xSetRx( 0xFFFFFF ); // Rx Continuous
}
else
{
SX126xSetRx( RxTimeout << 6 );
}
}
void RadioRxBoosted( uint32_t timeout )
{
SX126xSetDioIrqParams( IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_NONE,
IRQ_RADIO_NONE );
if( timeout != 0 )
{
TimerSetValue( &RxTimeoutTimer, timeout );
TimerStart( &RxTimeoutTimer );
}
if( RxContinuous == true )
{
SX126xSetRxBoosted( 0xFFFFFF ); // Rx Continuous
}
else
{
SX126xSetRxBoosted( RxTimeout << 6 );
}
}
void RadioSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime )
{
SX126xSetRxDutyCycle( rxTime, sleepTime );
}
void RadioAddRegisterToRetentionList( uint16_t registerAddress )
{
uint8_t buffer[9];
// Read the address and registers already added to the list
SX126xReadRegisters( REG_RETENTION_LIST_BASE_ADDRESS, buffer, 9 );
const uint8_t nbOfRegisters = buffer[0];
uint8_t* registerList = &buffer[1];
// Check if the register given as parameter is already added to the list
for( uint8_t i = 0; i < nbOfRegisters; i++ )
{
if( registerAddress == ( ( uint16_t ) registerList[2 * i] << 8 ) + registerList[2 * i + 1] )
{
return;
}
}
if( nbOfRegisters < MAX_NB_REG_IN_RETENTION )
{
buffer[0] += 1;
registerList[2 * nbOfRegisters] = ( uint8_t )( registerAddress >> 8 );
registerList[2 * nbOfRegisters + 1] = ( uint8_t )( registerAddress >> 0 );
// Update radio with modified list
SX126xWriteRegisters( REG_RETENTION_LIST_BASE_ADDRESS, buffer, 9 );
}
}
void RadioStartCad( void )
{
SX126xSetDioIrqParams( IRQ_CAD_DONE | IRQ_CAD_ACTIVITY_DETECTED, IRQ_CAD_DONE | IRQ_CAD_ACTIVITY_DETECTED, IRQ_RADIO_NONE, IRQ_RADIO_NONE );
SX126xSetCad( );
}
void RadioSetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time )
{
uint32_t timeout = ( uint32_t )time * 1000;
SX126xSetRfFrequency( freq );
SX126xSetRfTxPower( power );
SX126xSetTxContinuousWave( );
TimerSetValue( &TxTimeoutTimer, timeout );
TimerStart( &TxTimeoutTimer );
}
int16_t RadioRssi( RadioModems_t modem )
{
return SX126xGetRssiInst( );
}
void RadioWrite( uint32_t addr, uint8_t data )
{
SX126xWriteRegister( addr, data );
}
uint8_t RadioRead( uint32_t addr )
{
return SX126xReadRegister( addr );
}
void RadioWriteBuffer( uint32_t addr, uint8_t *buffer, uint8_t size )
{
SX126xWriteRegisters( addr, buffer, size );
}
void RadioReadBuffer( uint32_t addr, uint8_t *buffer, uint8_t size )
{
SX126xReadRegisters( addr, buffer, size );
}
void RadioSetMaxPayloadLength( RadioModems_t modem, uint8_t max )
{
if( modem == MODEM_LORA )
{
SX126x.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength = max;
SX126xSetPacketParams( &SX126x.PacketParams );
}
else
{
if( SX126x.PacketParams.Params.Gfsk.HeaderType == RADIO_PACKET_VARIABLE_LENGTH )
{
SX126x.PacketParams.Params.Gfsk.PayloadLength = MaxPayloadLength = max;
SX126xSetPacketParams( &SX126x.PacketParams );
}
}
}
void RadioSetPublicNetwork( bool enable )
{
RadioPublicNetwork.Current = RadioPublicNetwork.Previous = enable;
RadioSetModem( MODEM_LORA );
if( enable == true )
{
// Change LoRa modem SyncWord
SX126xWriteRegister( REG_LR_SYNCWORD, ( LORA_MAC_PUBLIC_SYNCWORD >> 8 ) & 0xFF );
SX126xWriteRegister( REG_LR_SYNCWORD + 1, LORA_MAC_PUBLIC_SYNCWORD & 0xFF );
}
else
{
// Change LoRa modem SyncWord
SX126xWriteRegister( REG_LR_SYNCWORD, ( LORA_MAC_PRIVATE_SYNCWORD >> 8 ) & 0xFF );
SX126xWriteRegister( REG_LR_SYNCWORD + 1, LORA_MAC_PRIVATE_SYNCWORD & 0xFF );
}
}
uint32_t RadioGetWakeupTime( void )
{
return SX126xGetBoardTcxoWakeupTime( ) + RADIO_WAKEUP_TIME;
}
void RadioOnTxTimeoutIrq( void* context )
{
if( ( RadioEvents != NULL ) && ( RadioEvents->TxTimeout != NULL ) )
{
RadioEvents->TxTimeout( );
}
}
void RadioOnRxTimeoutIrq( void* context )
{
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
}
void RadioOnDioIrq( void* context )
{
IrqFired = true;
}
void RadioIrqProcess( void )
{
CRITICAL_SECTION_BEGIN( );
// Clear IRQ flag
const bool isIrqFired = IrqFired;
IrqFired = false;
CRITICAL_SECTION_END( );
if( isIrqFired == true )
{
uint16_t irqRegs = SX126xGetIrqStatus( );
SX126xClearIrqStatus( irqRegs );
// Check if DIO1 pin is High. If it is the case revert IrqFired to true
CRITICAL_SECTION_BEGIN( );
if( SX126xGetDio1PinState( ) == 1 )
{
IrqFired = true;
}
CRITICAL_SECTION_END( );
if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
{
TimerStop( &TxTimeoutTimer );
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SX126xSetOperatingMode( MODE_STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->TxDone != NULL ) )
{
RadioEvents->TxDone( );
}
}
if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
{
TimerStop( &RxTimeoutTimer );
if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
{
if( RxContinuous == false )
{
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SX126xSetOperatingMode( MODE_STDBY_RC );
}
if( ( RadioEvents != NULL ) && ( RadioEvents->RxError ) )
{
RadioEvents->RxError( );
}
}
else
{
uint8_t size;
if( RxContinuous == false )
{
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SX126xSetOperatingMode( MODE_STDBY_RC );
// WORKAROUND - Implicit Header Mode Timeout Behavior, see DS_SX1261-2_V1.2 datasheet chapter 15.3
SX126xWriteRegister( REG_RTC_CTRL, 0x00 );
SX126xWriteRegister( REG_EVT_CLR, SX126xReadRegister( REG_EVT_CLR ) | ( 1 << 1 ) );
// WORKAROUND END
}
SX126xGetPayload( RadioRxPayload, &size , 255 );
SX126xGetPacketStatus( &RadioPktStatus );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxDone != NULL ) )
{
RadioEvents->RxDone( RadioRxPayload, size, RadioPktStatus.Params.LoRa.RssiPkt, RadioPktStatus.Params.LoRa.SnrPkt );
}
}
}
if( ( irqRegs & IRQ_CAD_DONE ) == IRQ_CAD_DONE )
{
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SX126xSetOperatingMode( MODE_STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->CadDone != NULL ) )
{
RadioEvents->CadDone( ( ( irqRegs & IRQ_CAD_ACTIVITY_DETECTED ) == IRQ_CAD_ACTIVITY_DETECTED ) );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( SX126xGetOperatingMode( ) == MODE_TX )
{
TimerStop( &TxTimeoutTimer );
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SX126xSetOperatingMode( MODE_STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->TxTimeout != NULL ) )
{
RadioEvents->TxTimeout( );
}
}
else if( SX126xGetOperatingMode( ) == MODE_RX )
{
TimerStop( &RxTimeoutTimer );
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SX126xSetOperatingMode( MODE_STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
}
}
if( ( irqRegs & IRQ_PREAMBLE_DETECTED ) == IRQ_PREAMBLE_DETECTED )
{
//__NOP( );
}
if( ( irqRegs & IRQ_SYNCWORD_VALID ) == IRQ_SYNCWORD_VALID )
{
//__NOP( );
}
if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
{
//__NOP( );
}
if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
{
TimerStop( &RxTimeoutTimer );
if( RxContinuous == false )
{
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SX126xSetOperatingMode( MODE_STDBY_RC );
}
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
}
}
}
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Комментарий ( 0 )