Слияние кода завершено, страница обновится автоматически
/*!
* \file radio.c
*
* \brief Radio driver API definition
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* \endcode
*
* \author Benjamin Boulet ( Semtech )
*/
#include <math.h>
#include <string.h>
#include "utilities.h"
#include "timer.h"
#include "delay.h"
#include "radio.h"
#include "lr1110.h"
#include "lr1110_hal.h"
#include "lr1110_radio.h"
#include "lr1110_system.h"
#include "lr1110_regmem.h"
#include "lr1110-board.h"
#include "board.h"
/*!
* \brief Initializes the radio
*
* \param [IN] events Structure containing the driver callback functions
*/
void RadioInit( RadioEvents_t* events );
/*!
* Return current radio status
*
* \param status Radio status.[RF_IDLE, RF_RX_RUNNING, RF_TX_RUNNING]
*/
RadioState_t RadioGetStatus( void );
/*!
* \brief Configures the radio with the given modem
*
* \param [IN] modem Modem to be used [0: FSK, 1: LoRa]
*/
void RadioSetModem( RadioModems_t modem );
/*!
* \brief Sets the channel frequency
*
* \param [IN] freq Channel RF frequency
*/
void RadioSetChannel( uint32_t freq );
/*!
* \brief Checks if the channel is free for the given time
*
* \remark The FSK modem is always used for this task as we can select the Rx bandwidth at will.
*
* \param [IN] freq Channel RF frequency in Hertz
* \param [IN] rxBandwidth Rx bandwidth in Hertz
* \param [IN] rssiThresh RSSI threshold in dBm
* \param [IN] maxCarrierSenseTime Max time in milliseconds while the RSSI is measured
*
* \retval isFree [true: Channel is free, false: Channel is not free]
*/
bool RadioIsChannelFree( uint32_t freq, uint32_t rxBandwidth, int16_t rssiThresh, uint32_t maxCarrierSenseTime );
/*!
* \brief Generates a 32 bits random value based on the RSSI readings
*
* \remark This function sets the radio in LoRa modem mode and disables
* all interrupts.
* After calling this function either Radio.SetRxConfig or
* Radio.SetTxConfig functions must be called.
*
* \retval randomValue 32 bits random value
*/
uint32_t RadioRandom( void );
/*!
* \brief Sets the reception parameters
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] bandwidth Sets the bandwidth
* FSK : >= 2600 and <= 250000 Hz
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] bandwidthAfc Sets the AFC Bandwidth (FSK only)
* FSK : >= 2600 and <= 250000 Hz
* LoRa: N/A ( set to 0 )
* \param [IN] preambleLen Sets the Preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] symbTimeout Sets the RxSingle timeout value
* FSK : timeout in number of bytes
* LoRa: timeout in symbols
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] payloadLen Sets payload length when fixed length is used
* \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON]
* \param [IN] FreqHopOn Enables disables the intra-packet frequency hopping
* FSK : N/A ( set to 0 )
* LoRa: [0: OFF, 1: ON]
* \param [IN] HopPeriod Number of symbols between each hop
* FSK : N/A ( set to 0 )
* LoRa: Number of symbols
* \param [IN] iqInverted Inverts IQ signals (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [0: not inverted, 1: inverted]
* \param [IN] rxContinuous Sets the reception in continuous mode
* [false: single mode, true: continuous mode]
*/
void RadioSetRxConfig( RadioModems_t modem, uint32_t bandwidth, uint32_t datarate, uint8_t coderate,
uint32_t bandwidthAfc, uint16_t preambleLen, uint16_t symbTimeout, bool fixLen,
uint8_t payloadLen, bool crcOn, bool FreqHopOn, uint8_t HopPeriod, bool iqInverted,
bool rxContinuous );
/*!
* \brief Sets the transmission parameters
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] power Sets the output power [dBm]
* \param [IN] fdev Sets the frequency deviation (FSK only)
* FSK : [Hz]
* LoRa: 0
* \param [IN] bandwidth Sets the bandwidth (LoRa only)
* FSK : 0
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] preambleLen Sets the preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] crcOn Enables disables the CRC [0: OFF, 1: ON]
* \param [IN] FreqHopOn Enables disables the intra-packet frequency hopping
* FSK : N/A ( set to 0 )
* LoRa: [0: OFF, 1: ON]
* \param [IN] HopPeriod Number of symbols between each hop
* FSK : N/A ( set to 0 )
* LoRa: Number of symbols
* \param [IN] iqInverted Inverts IQ signals (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [0: not inverted, 1: inverted]
* \param [IN] timeout Transmission timeout [ms]
*/
void RadioSetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev, uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint16_t preambleLen, bool fixLen, bool crcOn, bool FreqHopOn,
uint8_t HopPeriod, bool iqInverted, uint32_t timeout );
/*!
* \brief Checks if the given RF frequency is supported by the hardware
*
* \param [IN] frequency RF frequency to be checked
* \retval isSupported [true: supported, false: unsupported]
*/
bool RadioCheckRfFrequency( uint32_t frequency );
/*!
* \brief Computes the packet time on air in ms for the given payload
*
* \Remark Can only be called once SetRxConfig or SetTxConfig have been called
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] bandwidth Sets the bandwidth
* FSK : >= 2600 and <= 250000 Hz
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] preambleLen Sets the Preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] payloadLen Sets payload length when fixed length is used
* \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON]
*
* \retval airTime Computed airTime (ms) for the given packet payload length
*/
uint32_t RadioTimeOnAir( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn );
/*!
* \brief Sends the buffer of size. Prepares the packet to be sent and sets
* the radio in transmission
*
* \param [IN]: buffer Buffer pointer
* \param [IN]: size Buffer size
*/
void RadioSend( uint8_t* buffer, uint8_t size );
/*!
* \brief Sets the radio in sleep mode
*/
void RadioSleep( void );
/*!
* \brief Sets the radio in standby mode
*/
void RadioStandby( void );
/*!
* \brief Sets the radio in reception mode for the given time
* \param [IN] timeout Reception timeout [ms]
* [0: continuous, others timeout]
*/
void RadioRx( uint32_t timeout );
/*!
* \brief Start a Channel Activity Detection
*/
void RadioStartCad( void );
/*!
* \brief Sets the radio in continuous wave transmission mode
*
* \param [IN]: freq Channel RF frequency
* \param [IN]: power Sets the output power [dBm]
* \param [IN]: time Transmission mode timeout [s]
*/
void RadioSetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time );
/*!
* \brief Reads the current RSSI value
*
* \retval rssiValue Current RSSI value in [dBm]
*/
int16_t RadioRssi( RadioModems_t modem );
/*!
* \brief Writes the radio register at the specified address
*
* \param [IN]: addr Register address
* \param [IN]: data New register value
*/
void RadioWrite( uint32_t addr, uint8_t data );
/*!
* \brief Reads the radio register at the specified address
*
* \param [IN]: addr Register address
* \retval data Register value
*/
uint8_t RadioRead( uint32_t addr );
/*!
* \brief Writes multiple radio registers starting at address
*
* \param [IN] addr First Radio register address
* \param [IN] buffer Buffer containing the new register's values
* \param [IN] size Number of registers to be written
*/
void RadioWriteBuffer( uint32_t addr, uint8_t* buffer, uint8_t size );
/*!
* \brief Reads multiple radio registers starting at address
*
* \param [IN] addr First Radio register address
* \param [OUT] buffer Buffer where to copy the registers data
* \param [IN] size Number of registers to be read
*/
void RadioReadBuffer( uint32_t addr, uint8_t* buffer, uint8_t size );
/*!
* \brief Sets the maximum payload length.
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] max Maximum payload length in bytes
*/
void RadioSetMaxPayloadLength( RadioModems_t modem, uint8_t max );
/*!
* \brief Sets the network to public or private. Updates the sync byte.
*
* \remark Applies to LoRa modem only
*
* \param [IN] enable if true, it enables a public network
*/
void RadioSetPublicNetwork( bool enable );
/*!
* \brief Gets the time required for the board plus radio to get out of sleep.[ms]
*
* \retval time Radio plus board wakeup time in ms.
*/
uint32_t RadioGetWakeupTime( void );
/*!
* \brief Process radio irq
*/
void RadioIrqProcess( void );
/*!
* \brief Sets the radio in reception mode with Max LNA gain for the given time
* \param [IN] timeout Reception timeout [ms]
* [0: continuous, others timeout]
*/
void RadioRxBoosted( uint32_t timeout );
/*!
* \brief Sets the Rx duty cycle management parameters
*
* \param [in] rxTime Structure describing reception timeout value
* \param [in] sleepTime Structure describing sleep timeout value
*/
void RadioSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime );
/*!
* Radio driver structure initialization
*/
const struct Radio_s Radio = {
RadioInit,
RadioGetStatus,
RadioSetModem,
RadioSetChannel,
RadioIsChannelFree,
RadioRandom,
RadioSetRxConfig,
RadioSetTxConfig,
RadioCheckRfFrequency,
RadioTimeOnAir,
RadioSend,
RadioSleep,
RadioStandby,
RadioRx,
RadioStartCad,
RadioSetTxContinuousWave,
RadioRssi,
RadioWrite,
RadioRead,
RadioWriteBuffer,
RadioReadBuffer,
RadioSetMaxPayloadLength,
RadioSetPublicNetwork,
RadioGetWakeupTime,
RadioIrqProcess,
// Available on LR1110 only
RadioRxBoosted,
RadioSetRxDutyCycle,
};
/*
* Local types definition
*/
/*!
* FSK bandwidth definition
*/
typedef struct
{
uint32_t bandwidth;
uint8_t RegValue;
} FskBandwidth_t;
/*!
* Precomputed FSK bandwidth registers values
*/
const FskBandwidth_t FskBandwidths[] = {
{ 4800, 0x1F }, { 5800, 0x17 }, { 7300, 0x0F }, { 9700, 0x1E }, { 11700, 0x16 }, { 14600, 0x0E },
{ 19500, 0x1D }, { 23400, 0x15 }, { 29300, 0x0D }, { 39000, 0x1C }, { 46900, 0x14 }, { 58600, 0x0C },
{ 78200, 0x1B }, { 93800, 0x13 }, { 117300, 0x0B }, { 156200, 0x1A }, { 187200, 0x12 }, { 234300, 0x0A },
{ 312000, 0x19 }, { 373600, 0x11 }, { 467000, 0x09 }, { 500000, 0x00 }, // Invalid Bandwidth
};
const lr1110_radio_lora_bw_t Bandwidths[] = { LR1110_RADIO_LORA_BW125, LR1110_RADIO_LORA_BW250,
LR1110_RADIO_LORA_BW500 };
uint8_t MaxPayloadLength = 0xFF;
uint32_t TxTimeout = 0;
uint32_t RxTimeout = 0;
bool RxContinuous = false;
lr1110_radio_packet_status_lora_t lora_packet_status;
lr1110_radio_packet_status_gfsk_t gfsk_packet_status;
uint8_t RadioRxPayload[255];
bool IrqFired = false;
/*
* LR1110 DIO IRQ callback functions prototype
*/
/*!
* \brief DIO 0 IRQ callback
*/
void RadioOnDioIrq( void* context );
/*!
* \brief Tx timeout timer callback
*/
void RadioOnTxTimeoutIrq( void* context );
/*!
* \brief Rx timeout timer callback
*/
void RadioOnRxTimeoutIrq( void* context );
/*
* Private global variables
*/
/*!
* Holds the current network type for the radio
*/
typedef struct
{
bool Previous;
bool Current;
} RadioPublicNetwork_t;
static RadioPublicNetwork_t RadioPublicNetwork = { false };
/*!
* Radio callbacks variable
*/
static RadioEvents_t* RadioEvents;
/*
* Public global variables
*/
/*!
* Radio hardware and global parameters
*/
lr1110_t LR1110;
/*!
* Tx and Rx timers
*/
TimerEvent_t TxTimeoutTimer;
TimerEvent_t RxTimeoutTimer;
/*!
* Returns the known FSK bandwidth registers value
*
* \param [IN] bandwidth Bandwidth value in Hz
* \retval regValue Bandwidth register value.
*/
static uint8_t RadioGetFskBandwidthRegValue( uint32_t bandwidth )
{
uint8_t i;
if( bandwidth == 0 )
{
return ( 0x1F );
}
for( i = 0; i < ( sizeof( FskBandwidths ) / sizeof( FskBandwidth_t ) ) - 1; i++ )
{
if( ( bandwidth >= FskBandwidths[i].bandwidth ) && ( bandwidth < FskBandwidths[i + 1].bandwidth ) )
{
return FskBandwidths[i + 1].RegValue;
}
}
// ERROR: Value not found
while( 1 )
;
}
void RadioInit( RadioEvents_t* events )
{
RadioEvents = events;
lr1110_board_init( &LR1110, RadioOnDioIrq );
lr1110_system_set_standby( &LR1110, LR1110_SYSTEM_STDBY_CONFIG_RC );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_STDBY_RC );
lr1110_system_set_regmode( &LR1110, LR1110_SYSTEM_REGMODE_DCDC_CONVERTER );
lr1110_radio_set_tx_params( &LR1110, 0, LR1110_RADIO_RAMP_TIME_200U );
lr1110_system_set_dio_irq_params( &LR1110, LR1110_SYSTEM_IRQ_ALL_MASK, LR1110_SYSTEM_IRQ_NONE_MASK );
// Initialize driver timeout timers
TimerInit( &TxTimeoutTimer, RadioOnTxTimeoutIrq );
TimerInit( &RxTimeoutTimer, RadioOnRxTimeoutIrq );
IrqFired = false;
}
RadioState_t RadioGetStatus( void )
{
switch( lr1110_hal_get_operating_mode( &LR1110 ) )
{
case LR1110_HAL_OP_MODE_TX:
return RF_TX_RUNNING;
case LR1110_HAL_OP_MODE_RX:
case LR1110_HAL_OP_MODE_RX_C:
case LR1110_HAL_OP_MODE_RX_DC:
return RF_RX_RUNNING;
case LR1110_HAL_OP_MODE_CAD:
return RF_CAD;
default:
return RF_IDLE;
}
}
void RadioSetModem( RadioModems_t modem )
{
switch( modem )
{
default:
case MODEM_FSK:
lr1110_radio_set_packet_type( &LR1110, LR1110_RADIO_PACKET_GFSK );
// When switching to GFSK mode the LoRa SyncWord register value is reset
// Thus, we also reset the RadioPublicNetwork variable
RadioPublicNetwork.Current = false;
break;
case MODEM_LORA:
lr1110_radio_set_packet_type( &LR1110, LR1110_RADIO_PACKET_LORA );
// Public/Private network register is reset when switching modems
if( RadioPublicNetwork.Current != RadioPublicNetwork.Previous )
{
RadioPublicNetwork.Current = RadioPublicNetwork.Previous;
RadioSetPublicNetwork( RadioPublicNetwork.Current );
}
break;
}
}
void RadioSetChannel( uint32_t freq )
{
lr1110_radio_set_rf_frequency( &LR1110, freq );
}
bool RadioIsChannelFree( uint32_t freq, uint32_t rxBandwidth, int16_t rssiThresh, uint32_t maxCarrierSenseTime )
{
bool status = true;
int16_t rssi = 0;
uint32_t carrierSenseTime = 0;
RadioSetModem( MODEM_FSK );
RadioSetChannel( freq );
// Set Rx bandwidth. Other parameters are not used.
RadioSetRxConfig( MODEM_FSK, rxBandwidth, 600, 0, rxBandwidth, 3, 0, false,
0, false, 0, 0, false, true );
RadioRx( 0 );
DelayMs( 1 );
carrierSenseTime = TimerGetCurrentTime( );
// Perform carrier sense for maxCarrierSenseTime
while( TimerGetElapsedTime( carrierSenseTime ) < maxCarrierSenseTime )
{
rssi = RadioRssi( MODEM_FSK );
if( rssi > rssiThresh )
{
status = false;
break;
}
}
RadioSleep( );
return status;
}
uint32_t RadioRandom( void )
{
uint32_t rnd = 0;
RadioStandby( );
lr1110_system_get_random_number( &LR1110, &rnd );
return rnd;
}
void RadioSetRxConfig( RadioModems_t modem, uint32_t bandwidth, uint32_t datarate, uint8_t coderate,
uint32_t bandwidthAfc, uint16_t preambleLen, uint16_t symbTimeout, bool fixLen,
uint8_t payloadLen, bool crcOn, bool freqHopOn, uint8_t hopPeriod, bool iqInverted,
bool rxContinuous )
{
RxContinuous = rxContinuous;
if( rxContinuous == true )
{
symbTimeout = 0;
}
if( fixLen == true )
{
MaxPayloadLength = payloadLen;
}
else
{
MaxPayloadLength = 0xFF;
}
switch( modem )
{
case MODEM_FSK:
lr1110_radio_stop_timeout_on_preamble( &LR1110, false );
LR1110.modulation_params.packet_type = LR1110_RADIO_PACKET_GFSK;
LR1110.modulation_params.modulation.gfsk.bitrate = datarate;
LR1110.modulation_params.modulation.gfsk.pulse_shape = LR1110_RADIO_PULSESHAPE_GAUSSIANBT1;
LR1110.modulation_params.modulation.gfsk.bandwidth =
( lr1110_radio_gfsk_rx_bw_t ) RadioGetFskBandwidthRegValue( bandwidth << 1 ); // LR1110 badwidth is double sided
LR1110.packet_params.packet_type = LR1110_RADIO_PACKET_GFSK;
LR1110.packet_params.packet.gfsk.preamble_length_tx_in_bit = ( preambleLen << 3 ); // convert byte into bit
LR1110.packet_params.packet.gfsk.preamble_detect = LR1110_RADIO_GFSK_PREAMBLE_DETECTOR_LENGTH_8BITS;
LR1110.packet_params.packet.gfsk.sync_word_length_in_bit = 3 << 3; // convert byte into bit
LR1110.packet_params.packet.gfsk.address_filtering = LR1110_RADIO_GFSK_ADDRESS_FILTERING_DISABLE;
LR1110.packet_params.packet.gfsk.header_type =
( fixLen == true ) ? LR1110_RADIO_GFSK_HEADER_TYPE_IMPLICIT : LR1110_RADIO_GFSK_HEADER_TYPE_EXPLICIT;
LR1110.packet_params.packet.gfsk.payload_length_in_byte = MaxPayloadLength;
if( crcOn == true )
{
LR1110.packet_params.packet.gfsk.crc_type = LR1110_RADIO_GFSK_CRC_2BYTES_INV;
}
else
{
LR1110.packet_params.packet.gfsk.crc_type = LR1110_RADIO_GFSK_CRC_OFF;
}
LR1110.packet_params.packet.gfsk.dc_free = LR1110_RADIO_GFSK_DCFREE_WHITENING;
RadioStandby( );
RadioSetModem( ( LR1110.modulation_params.packet_type == LR1110_RADIO_PACKET_GFSK ) ? MODEM_FSK : MODEM_LORA );
lr1110_radio_set_modulation_param_gfsk( &LR1110, &LR1110.modulation_params.modulation.gfsk );
lr1110_radio_set_packet_param_gfsk( &LR1110, &LR1110.packet_params.packet.gfsk );
lr1110_radio_set_gfsk_sync_word( &LR1110, ( uint8_t[] ){ 0xC1, 0x94, 0xC1, 0x00, 0x00, 0x00, 0x00, 0x00 } );
lr1110_radio_set_gfsk_crc_params( &LR1110, 0x1D0F, 0x1021 );
lr1110_radio_set_gfsk_whitening_params( &LR1110, 0x01FF );
RxTimeout = ( uint32_t )symbTimeout * 8000UL / datarate;
break;
case MODEM_LORA:
lr1110_radio_stop_timeout_on_preamble( &LR1110, false );
lr1110_radio_set_lora_sync_timeout( &LR1110, symbTimeout );
LR1110.modulation_params.packet_type = LR1110_RADIO_PACKET_LORA;
LR1110.modulation_params.modulation.lora.spreading_factor = ( lr1110_radio_lora_sf_t ) datarate;
LR1110.modulation_params.modulation.lora.bandwidth = Bandwidths[bandwidth];
LR1110.modulation_params.modulation.lora.coding_rate = ( lr1110_radio_lora_cr_t ) coderate;
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
LR1110.modulation_params.modulation.lora.ppm_offset = 0x01;
}
else
{
LR1110.modulation_params.modulation.lora.ppm_offset = 0x00;
}
LR1110.packet_params.packet_type = LR1110_RADIO_PACKET_LORA;
if( ( LR1110.modulation_params.modulation.lora.spreading_factor == LR1110_RADIO_LORA_SF5 ) ||
( LR1110.modulation_params.modulation.lora.spreading_factor == LR1110_RADIO_LORA_SF6 ) )
{
if( preambleLen < 12 )
{
LR1110.packet_params.packet.lora.preamble_length_in_symb = 12;
}
else
{
LR1110.packet_params.packet.lora.preamble_length_in_symb = preambleLen;
}
}
else
{
LR1110.packet_params.packet.lora.preamble_length_in_symb = preambleLen;
}
LR1110.packet_params.packet.lora.header_type = ( lr1110_radio_lora_header_type_t ) fixLen;
LR1110.packet_params.packet.lora.payload_length_in_byte = MaxPayloadLength;
LR1110.packet_params.packet.lora.crc = ( lr1110_radio_lora_crc_t ) crcOn;
LR1110.packet_params.packet.lora.iq = ( lr1110_radio_lora_iq_t ) iqInverted;
RadioSetModem( ( LR1110.modulation_params.packet_type == LR1110_RADIO_PACKET_GFSK ) ? MODEM_FSK : MODEM_LORA );
lr1110_radio_set_modulation_param_lora( &LR1110, &LR1110.modulation_params.modulation.lora );
lr1110_radio_set_packet_param_lora( &LR1110, &LR1110.packet_params.packet.lora );
// Timeout Max, Timeout handled directly in SetRx function
RxTimeout = 0xFFFF;
break;
}
}
void RadioSetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev, uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint16_t preambleLen, bool fixLen, bool crcOn, bool freqHopOn,
uint8_t hopPeriod, bool iqInverted, uint32_t timeout )
{
switch( modem )
{
case MODEM_FSK:
LR1110.modulation_params.packet_type = LR1110_RADIO_PACKET_GFSK;
LR1110.modulation_params.modulation.gfsk.bitrate = datarate;
LR1110.modulation_params.modulation.gfsk.pulse_shape = LR1110_RADIO_PULSESHAPE_GAUSSIANBT1;
LR1110.modulation_params.modulation.gfsk.bandwidth =
( lr1110_radio_gfsk_rx_bw_t ) RadioGetFskBandwidthRegValue( bandwidth << 1 ); // LR1110 badwidth is double sided
LR1110.modulation_params.modulation.gfsk.fdev = fdev;
LR1110.packet_params.packet_type = LR1110_RADIO_PACKET_GFSK;
LR1110.packet_params.packet.gfsk.preamble_length_tx_in_bit = ( preambleLen << 3 ); // convert byte into bit
LR1110.packet_params.packet.gfsk.preamble_detect = LR1110_RADIO_GFSK_PREAMBLE_DETECTOR_LENGTH_8BITS;
LR1110.packet_params.packet.gfsk.sync_word_length_in_bit = 3 << 3; // convert byte into bit
LR1110.packet_params.packet.gfsk.address_filtering = LR1110_RADIO_GFSK_ADDRESS_FILTERING_DISABLE;
LR1110.packet_params.packet.gfsk.header_type =
( fixLen == true ) ? LR1110_RADIO_GFSK_HEADER_TYPE_IMPLICIT : LR1110_RADIO_GFSK_HEADER_TYPE_EXPLICIT;
if( crcOn == true )
{
LR1110.packet_params.packet.gfsk.crc_type = LR1110_RADIO_GFSK_CRC_2BYTES_INV;
}
else
{
LR1110.packet_params.packet.gfsk.crc_type = LR1110_RADIO_GFSK_CRC_OFF;
}
LR1110.packet_params.packet.gfsk.dc_free = LR1110_RADIO_GFSK_DCFREE_WHITENING;
RadioStandby( );
RadioSetModem( ( LR1110.modulation_params.packet_type == LR1110_RADIO_PACKET_GFSK ) ? MODEM_FSK : MODEM_LORA );
lr1110_radio_set_modulation_param_gfsk( &LR1110, &LR1110.modulation_params.modulation.gfsk );
lr1110_radio_set_packet_param_gfsk( &LR1110, &LR1110.packet_params.packet.gfsk );
lr1110_radio_set_gfsk_sync_word( &LR1110, ( uint8_t[] ){ 0xC1, 0x94, 0xC1, 0x00, 0x00, 0x00, 0x00, 0x00 } );
lr1110_radio_set_gfsk_crc_params( &LR1110, 0x1D0F, 0x1021 );
lr1110_radio_set_gfsk_whitening_params( &LR1110, 0x01FF );
break;
case MODEM_LORA:
LR1110.modulation_params.packet_type = LR1110_RADIO_PACKET_LORA;
LR1110.modulation_params.modulation.lora.spreading_factor = ( lr1110_radio_lora_sf_t ) datarate;
LR1110.modulation_params.modulation.lora.bandwidth = Bandwidths[bandwidth];
LR1110.modulation_params.modulation.lora.coding_rate = ( lr1110_radio_lora_cr_t ) coderate;
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
LR1110.modulation_params.modulation.lora.ppm_offset = 0x01;
}
else
{
LR1110.modulation_params.modulation.lora.ppm_offset = 0x00;
}
LR1110.packet_params.packet_type = LR1110_RADIO_PACKET_LORA;
if( ( LR1110.modulation_params.modulation.lora.spreading_factor == LR1110_RADIO_LORA_SF5 ) ||
( LR1110.modulation_params.modulation.lora.spreading_factor == LR1110_RADIO_LORA_SF6 ) )
{
if( preambleLen < 12 )
{
LR1110.packet_params.packet.lora.preamble_length_in_symb = 12;
}
else
{
LR1110.packet_params.packet.lora.preamble_length_in_symb = preambleLen;
}
}
else
{
LR1110.packet_params.packet.lora.preamble_length_in_symb = preambleLen;
}
LR1110.packet_params.packet.lora.header_type = ( lr1110_radio_lora_header_type_t ) fixLen;
LR1110.packet_params.packet.lora.payload_length_in_byte = MaxPayloadLength;
LR1110.packet_params.packet.lora.crc = ( lr1110_radio_lora_crc_t ) crcOn;
LR1110.packet_params.packet.lora.iq = ( lr1110_radio_lora_iq_t ) iqInverted;
RadioStandby( );
RadioSetModem( ( LR1110.modulation_params.packet_type == LR1110_RADIO_PACKET_GFSK ) ? MODEM_FSK : MODEM_LORA );
lr1110_radio_set_modulation_param_lora( &LR1110, &LR1110.modulation_params.modulation.lora );
lr1110_radio_set_packet_param_lora( &LR1110, &LR1110.packet_params.packet.lora );
break;
}
lr1110_board_set_rf_tx_power( &LR1110, power );
TxTimeout = timeout;
}
bool RadioCheckRfFrequency( uint32_t frequency )
{
return true;
}
static uint32_t RadioGetLoRaBandwidthInHz( lr1110_radio_lora_bw_t bw )
{
uint32_t bandwidthInHz = 0;
switch( bw )
{
case LR1110_RADIO_LORA_BW10:
bandwidthInHz = 10417UL;
break;
case LR1110_RADIO_LORA_BW15:
bandwidthInHz = 15625UL;
break;
case LR1110_RADIO_LORA_BW20:
bandwidthInHz = 20833UL;
break;
case LR1110_RADIO_LORA_BW31:
bandwidthInHz = 31250UL;
break;
case LR1110_RADIO_LORA_BW41:
bandwidthInHz = 41667UL;
break;
case LR1110_RADIO_LORA_BW62:
bandwidthInHz = 62500UL;
break;
case LR1110_RADIO_LORA_BW125:
bandwidthInHz = 125000UL;
break;
case LR1110_RADIO_LORA_BW250:
bandwidthInHz = 250000UL;
break;
case LR1110_RADIO_LORA_BW500:
bandwidthInHz = 500000UL;
break;
}
return bandwidthInHz;
}
static uint32_t RadioGetGfskTimeOnAirNumerator( uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
const uint8_t syncWordLength = 3;
return ( preambleLen << 3 ) +
( ( fixLen == false ) ? 8 : 0 ) +
( syncWordLength << 3 ) +
( ( payloadLen +
( 0 ) +
( ( crcOn == true ) ? 2 : 0 )
) << 3
);
}
static uint32_t RadioGetLoRaTimeOnAirNumerator( uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
int32_t crDenom = coderate + 4;
bool lowDatareOptimize = false;
// Ensure that the preamble length is at least 12 symbols when using SF5 or
// SF6
if( ( datarate == 5 ) || ( datarate == 6 ) )
{
if( preambleLen < 12 )
{
preambleLen = 12;
}
}
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
lowDatareOptimize = true;
}
int32_t ceilDenominator;
int32_t ceilNumerator = ( payloadLen << 3 ) +
( crcOn ? 16 : 0 ) -
( 4 * datarate ) +
( fixLen ? 0 : 20 );
if( datarate <= 6 )
{
ceilDenominator = 4 * datarate;
}
else
{
ceilNumerator += 8;
if( lowDatareOptimize == true )
{
ceilDenominator = 4 * ( datarate - 2 );
}
else
{
ceilDenominator = 4 * datarate;
}
}
if( ceilNumerator < 0 )
{
ceilNumerator = 0;
}
// Perform integral ceil()
int32_t intermediate =
( ( ceilNumerator + ceilDenominator - 1 ) / ceilDenominator ) * crDenom + preambleLen + 12;
if( datarate <= 6 )
{
intermediate += 2;
}
return ( uint32_t )( ( 4 * intermediate + 1 ) * ( 1 << ( datarate - 2 ) ) );
}
uint32_t RadioTimeOnAir( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
uint32_t numerator = 0;
uint32_t denominator = 1;
switch( modem )
{
case MODEM_FSK:
{
numerator = 1000U * RadioGetGfskTimeOnAirNumerator( datarate, coderate,
preambleLen, fixLen,
payloadLen, crcOn );
denominator = datarate;
}
break;
case MODEM_LORA:
{
numerator = 1000U * RadioGetLoRaTimeOnAirNumerator( bandwidth, datarate,
coderate, preambleLen,
fixLen, payloadLen, crcOn );
denominator = RadioGetLoRaBandwidthInHz( Bandwidths[bandwidth] );
}
break;
}
// Perform integral ceil()
return ( numerator + denominator - 1 ) / denominator;
}
void RadioSend( uint8_t* buffer, uint8_t size )
{
lr1110_radio_packet_types_t packet_type;
lr1110_system_set_dio_irq_params( &LR1110, LR1110_SYSTEM_IRQ_TXDONE_MASK | LR1110_SYSTEM_IRQ_TIMEOUT_MASK,
LR1110_SYSTEM_IRQ_NONE_MASK );
lr1110_radio_get_packet_type( &LR1110, &packet_type );
if( packet_type == LR1110_RADIO_PACKET_LORA )
{
LR1110.packet_params.packet.lora.payload_length_in_byte = size;
lr1110_radio_set_packet_param_lora( &LR1110, &LR1110.packet_params.packet.lora );
}
else
{
LR1110.packet_params.packet.gfsk.payload_length_in_byte = size;
lr1110_radio_set_packet_param_gfsk( &LR1110, &LR1110.packet_params.packet.gfsk );
}
/* Send Payload */
lr1110_regmem_write_buffer8( &LR1110, buffer, size );
lr1110_radio_set_tx( &LR1110, 0 );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_TX );
TimerSetValue( &TxTimeoutTimer, TxTimeout );
TimerStart( &TxTimeoutTimer );
}
void RadioSleep( void )
{
lr1110_system_sleep_config_t sleep_config;
sleep_config.is_warm_start = 1;
sleep_config.is_rtc_timeout = 0;
lr1110_system_set_sleep( &LR1110, sleep_config, 0 );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_SLEEP );
DelayMs( 2 );
}
void RadioStandby( void )
{
lr1110_system_set_standby( &LR1110, LR1110_SYSTEM_STDBY_CONFIG_RC );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_STDBY_RC );
}
void RadioRx( uint32_t timeout )
{
lr1110_system_set_dio_irq_params(
&LR1110,
LR1110_SYSTEM_IRQ_ALL_MASK, // LR1110_SYSTEM_IRQ_RXDONE_MASK | LR1110_SYSTEM_IRQ_TIMEOUT_MASK,
LR1110_SYSTEM_IRQ_NONE_MASK );
lr1110_radio_set_rx_boosted( &LR1110, false );
if( timeout != 0 )
{
TimerSetValue( &RxTimeoutTimer, timeout );
TimerStart( &RxTimeoutTimer );
}
if( RxContinuous == true )
{
lr1110_radio_set_rx( &LR1110, 0xFFFFFF ); // Rx Continuous
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_RX_C );
}
else
{
lr1110_radio_set_rx( &LR1110, ( RxTimeout * 32768 ) );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_RX );
}
}
void RadioRxBoosted( uint32_t timeout )
{
lr1110_system_set_dio_irq_params(
&LR1110,
LR1110_SYSTEM_IRQ_ALL_MASK, // LR1110_SYSTEM_IRQ_RXDONE_MASK | LR1110_SYSTEM_IRQ_TIMEOUT_MASK,
LR1110_SYSTEM_IRQ_NONE_MASK );
if( timeout != 0 )
{
TimerSetValue( &RxTimeoutTimer, timeout );
TimerStart( &RxTimeoutTimer );
}
lr1110_radio_set_rx_boosted( &LR1110, true );
if( RxContinuous == true )
{
lr1110_radio_set_rx( &LR1110, 0xFFFFFF ); // Rx Continuous
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_RX_C );
}
else
{
lr1110_radio_set_rx( &LR1110, ( RxTimeout * 32768 ) );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_RX );
}
}
void RadioSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime )
{
lr1110_radio_set_rx_dutycycle( &LR1110, rxTime, sleepTime, 0 );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_RX_DC );
}
void RadioStartCad( void )
{
lr1110_radio_set_cad( &LR1110 );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_CAD );
}
void RadioTx( uint32_t timeout )
{
lr1110_radio_set_tx( &LR1110, timeout * 32768 );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_TX );
}
void RadioSetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time )
{
uint32_t timeout = ( uint32_t )time * 1000;
lr1110_radio_set_rf_frequency( &LR1110, freq );
lr1110_board_set_rf_tx_power( &LR1110, power );
lr1110_radio_set_tx_cw( &LR1110 );
lr1110_hal_set_operating_mode( &LR1110, LR1110_HAL_OP_MODE_TX );
TimerSetValue( &TxTimeoutTimer, timeout );
TimerStart( &TxTimeoutTimer );
}
int16_t RadioRssi( RadioModems_t modem )
{
int8_t rssi = 0;
lr1110_radio_get_rssi_inst( &LR1110, &rssi );
return rssi;
}
void RadioWrite( uint32_t addr, uint8_t data )
{
lr1110_regmem_write_mem8( &LR1110, addr, &data, 1 );
}
uint8_t RadioRead( uint32_t addr )
{
uint8_t data = 0;
lr1110_regmem_read_mem8( &LR1110, addr, &data, 1 );
return data;
}
void RadioWriteBuffer( uint32_t addr, uint8_t* buffer, uint8_t size )
{
lr1110_regmem_write_buffer8( &LR1110, buffer, size );
}
void RadioReadBuffer( uint32_t addr, uint8_t* buffer, uint8_t size )
{
lr1110_regmem_read_buffer8( &LR1110, buffer, addr, size );
}
void RadioWriteFifo( uint8_t* buffer, uint8_t size )
{
lr1110_regmem_write_buffer8( &LR1110, buffer, size );
}
void RadioReadFifo( uint8_t* buffer, uint8_t offset, uint8_t size )
{
lr1110_regmem_read_buffer8( &LR1110, buffer, offset, size );
}
void RadioSetMaxPayloadLength( RadioModems_t modem, uint8_t max )
{
if( modem == MODEM_LORA )
{
LR1110.packet_params.packet.lora.payload_length_in_byte = MaxPayloadLength = max;
lr1110_radio_set_packet_param_lora( &LR1110, &LR1110.packet_params.packet.lora );
}
else
{
if( LR1110.packet_params.packet.gfsk.header_type == LR1110_RADIO_GFSK_HEADER_TYPE_EXPLICIT )
{
LR1110.packet_params.packet.gfsk.payload_length_in_byte = MaxPayloadLength = max;
lr1110_radio_set_packet_param_gfsk( &LR1110, &LR1110.packet_params.packet.gfsk );
}
}
}
void RadioSetPublicNetwork( bool enable )
{
RadioPublicNetwork.Current = RadioPublicNetwork.Previous = enable;
RadioSetModem( MODEM_LORA );
if( enable == true )
{
// Change LoRa modem SyncWord
lr1110_radio_set_lora_sync_word( &LR1110, LR1110_RADIO_LORA_NETWORK_PUBLIC );
}
else
{
// Change LoRa modem SyncWord
lr1110_radio_set_lora_sync_word( &LR1110, LR1110_RADIO_LORA_NETWORK_PRIVATE );
}
}
uint32_t RadioGetWakeupTime( void )
{
return lr1110_board_get_tcxo_wakeup_time( &LR1110 ) + 3;
}
void RadioOnTxTimeoutIrq( void* context )
{
if( ( RadioEvents != NULL ) && ( RadioEvents->TxTimeout != NULL ) )
{
RadioEvents->TxTimeout( );
}
}
void RadioOnRxTimeoutIrq( void* context )
{
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
}
void RadioOnDioIrq( void* context )
{
IrqFired = true;
}
/*!
* \brief Callback - handle the interrupt get & clear
*
* This function shall be called each time there is an interrupt coming from the
* radio. It is responsible for the update of the operating mode.
*
* \param [in] radio Radio abstraction
*
* \param [out] irq Pointer to the interrupt field returned to the caller
*
* \see lr1110_system_get_status, lr1110_system_clear_irq
*/
static void lr1110_system_irq_process( const void* radio, uint32_t* irq )
{
lr1110_system_stat1_t stat1;
lr1110_system_stat2_t stat2;
lr1110_hal_operating_mode_t op_mode = lr1110_hal_get_operating_mode( radio );
lr1110_system_get_status( radio, &stat1, &stat2, irq );
lr1110_system_clear_irq( radio, *irq );
// Check if DIO1 pin is High. If it is the case revert IrqFired to true
CRITICAL_SECTION_BEGIN( );
if( lr1110_get_dio_1_pin_state( radio ) == 1 )
{
IrqFired = true;
}
CRITICAL_SECTION_END( );
if( ( ( *irq & LR1110_SYSTEM_IRQ_TXDONE_MASK ) != 0 ) || ( ( *irq & LR1110_SYSTEM_IRQ_CADDONE_MASK ) != 0 ) ||
( ( *irq & LR1110_SYSTEM_IRQ_TIMEOUT_MASK ) != 0 ) )
{
lr1110_hal_set_operating_mode( radio, LR1110_HAL_OP_MODE_STDBY_RC );
}
if( ( ( *irq & LR1110_SYSTEM_IRQ_HEADERERR_MASK ) != 0 ) || ( ( *irq & LR1110_SYSTEM_IRQ_RXDONE_MASK ) != 0 ) ||
( ( *irq & LR1110_SYSTEM_IRQ_CRCERR_MASK ) != 0 ) )
{
if( op_mode != LR1110_HAL_OP_MODE_RX_C )
{
lr1110_hal_set_operating_mode( radio, LR1110_HAL_OP_MODE_STDBY_RC );
}
}
}
void RadioIrqProcess( void )
{
if( IrqFired == true )
{
CRITICAL_SECTION_BEGIN( );
// Clear IRQ flag
IrqFired = false;
CRITICAL_SECTION_END( );
uint32_t irqRegs;
// Get Status
lr1110_system_irq_process( &LR1110, &irqRegs );
if( ( irqRegs & LR1110_SYSTEM_IRQ_TXDONE_MASK ) == LR1110_SYSTEM_IRQ_TXDONE_MASK )
{
TimerStop( &TxTimeoutTimer );
if( ( RadioEvents != NULL ) && ( RadioEvents->TxDone != NULL ) )
{
RadioEvents->TxDone( );
}
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_RXDONE_MASK ) == LR1110_SYSTEM_IRQ_RXDONE_MASK )
{
lr1110_radio_packet_types_t packet_type;
lr1110_radio_rxbuffer_status_t rxbuffer_status;
TimerStop( &RxTimeoutTimer );
lr1110_radio_get_rxbuffer_status( &LR1110, &rxbuffer_status );
lr1110_regmem_read_buffer8( &LR1110, RadioRxPayload, rxbuffer_status.rx_start_buffer_pointer,
rxbuffer_status.rx_payload_length );
lr1110_radio_get_packet_type( &LR1110, &packet_type );
if( packet_type == LR1110_RADIO_PACKET_LORA )
{
lr1110_radio_get_packet_status_lora( &LR1110, &lora_packet_status );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxDone != NULL ) )
{
RadioEvents->RxDone( RadioRxPayload, rxbuffer_status.rx_payload_length,
lora_packet_status.rssi_packet_in_dbm, lora_packet_status.snr_packet_in_db );
}
}
else
{
lr1110_radio_get_packet_status_gfsk( &LR1110, &gfsk_packet_status );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxDone != NULL ) )
{
RadioEvents->RxDone( RadioRxPayload, rxbuffer_status.rx_payload_length,
gfsk_packet_status.rssi_avg_in_dbm, 0 );
}
}
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_CRCERR_MASK ) == LR1110_SYSTEM_IRQ_CRCERR_MASK )
{
if( ( RadioEvents != NULL ) && ( RadioEvents->RxError != NULL ) )
{
RadioEvents->RxError( );
}
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_CADDONE_MASK ) == LR1110_SYSTEM_IRQ_CADDONE_MASK )
{
if( ( RadioEvents != NULL ) && ( RadioEvents->CadDone != NULL ) )
{
RadioEvents->CadDone(
( ( irqRegs & LR1110_SYSTEM_IRQ_CADDETECTED_MASK ) == LR1110_SYSTEM_IRQ_CADDETECTED_MASK ) );
}
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_TIMEOUT_MASK ) == LR1110_SYSTEM_IRQ_TIMEOUT_MASK )
{
TimerStop( &RxTimeoutTimer );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_PREAMBLEDETECTED_MASK ) == LR1110_SYSTEM_IRQ_PREAMBLEDETECTED_MASK )
{
//__NOP( );
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_SYNCWORD_HEADERVALID_MASK ) == LR1110_SYSTEM_IRQ_SYNCWORD_HEADERVALID_MASK )
{
//__NOP( );
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_HEADERERR_MASK ) == LR1110_SYSTEM_IRQ_HEADERERR_MASK )
{
TimerStop( &RxTimeoutTimer );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_GNSSSCANDONE_MASK ) == LR1110_SYSTEM_IRQ_GNSSSCANDONE_MASK )
{
if( ( RadioEvents != NULL ) && ( RadioEvents->GnssDone != NULL ) )
{
RadioEvents->GnssDone( );
}
}
if( ( irqRegs & LR1110_SYSTEM_IRQ_WIFISCANDONE_MASK ) == LR1110_SYSTEM_IRQ_WIFISCANDONE_MASK )
{
if( ( RadioEvents != NULL ) && ( RadioEvents->WifiDone != NULL ) )
{
RadioEvents->WifiDone( );
}
}
}
}
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Комментарий ( 0 )