Слияние кода завершено, страница обновится автоматически
/*!
* \file sx1272.c
*
* \brief SX1272 driver implementation
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* \endcode
*
* \author Miguel Luis ( Semtech )
*
* \author Gregory Cristian ( Semtech )
*/
#include <math.h>
#include <string.h>
#include "utilities.h"
#include "timer.h"
#include "radio.h"
#include "delay.h"
#include "sx1272.h"
#include "sx1272-board.h"
/*!
* \brief Internal frequency of the radio
*/
#define SX1272_XTAL_FREQ 32000000UL
/*!
* \brief Scaling factor used to perform fixed-point operations
*/
#define SX1272_PLL_STEP_SHIFT_AMOUNT ( 8 )
/*!
* \brief PLL step - scaled with SX1276_PLL_STEP_SHIFT_AMOUNT
*/
#define SX1272_PLL_STEP_SCALED ( SX1272_XTAL_FREQ >> ( 19 - SX1272_PLL_STEP_SHIFT_AMOUNT ) )
/*!
* \brief Radio buffer size
*/
#define RX_TX_BUFFER_SIZE 256
/*
* Local types definition
*/
/*!
* Radio registers definition
*/
typedef struct
{
RadioModems_t Modem;
uint8_t Addr;
uint8_t Value;
}RadioRegisters_t;
/*!
* FSK bandwidth definition
*/
typedef struct
{
uint32_t bandwidth;
uint8_t RegValue;
}FskBandwidth_t;
/*
* Private functions prototypes
*/
/*!
* \brief Sets the SX1272 in transmission mode for the given time
* \param [IN] timeout Transmission timeout [ms] [0: continuous, others timeout]
*/
static void SX1272SetTx( uint32_t timeout );
/*!
* \brief Writes the buffer contents to the SX1272 FIFO
*
* \param [IN] buffer Buffer containing data to be put on the FIFO.
* \param [IN] size Number of bytes to be written to the FIFO
*/
static void SX1272WriteFifo( uint8_t *buffer, uint8_t size );
/*!
* \brief Reads the contents of the SX1272 FIFO
*
* \param [OUT] buffer Buffer where to copy the FIFO read data.
* \param [IN] size Number of bytes to be read from the FIFO
*/
static void SX1272ReadFifo( uint8_t *buffer, uint8_t size );
/*!
* \brief Sets the SX1272 operating mode
*
* \param [IN] opMode New operating mode
*/
static void SX1272SetOpMode( uint8_t opMode );
/*!
* \brief Get frequency in Hertz for a given number of PLL steps
*
* \param [in] pllSteps Number of PLL steps
*
* \returns Frequency in Hertz
*/
static uint32_t SX1272ConvertPllStepToFreqInHz( uint32_t pllSteps );
/*!
* \brief Get the number of PLL steps for a given frequency in Hertz
*
* \param [in] freqInHz Frequency in Hertz
*
* \returns Number of PLL steps
*/
static uint32_t SX1272ConvertFreqInHzToPllStep( uint32_t freqInHz );
/*!
* \brief Get the parameter corresponding to a FSK Rx bandwith immediately above the minimum requested one.
*
* \param [in] bw Minimum required bandwith in Hz
*
* \returns parameter
*/
static uint8_t GetFskBandwidthRegValue( uint32_t bw );
/*!
* \brief Get the actual value in Hertz of a given LoRa bandwidth
*
* \param [in] bw LoRa bandwidth parameter
*
* \returns Actual LoRa bandwidth in Hertz
*/
static uint32_t SX1272GetLoRaBandwidthInHz( uint32_t bw );
/*!
* Compute the numerator for GFSK time-on-air computation.
*
* \remark To get the actual time-on-air in second, this value has to be divided by the GFSK bitrate in bits per
* second.
*
* \param [in] preambleLen
* \param [in] fixLen
* \param [in] payloadLen
* \param [in] crcOn
*
* \returns GFSK time-on-air numerator
*/
static uint32_t SX1272GetGfskTimeOnAirNumerator( uint16_t preambleLen, bool fixLen,
uint8_t payloadLen, bool crcOn );
/*!
* Compute the numerator for LoRa time-on-air computation.
*
* \remark To get the actual time-on-air in second, this value has to be divided by the LoRa bandwidth in Hertz.
*
* \param [in] bandwidth
* \param [in] datarate
* \param [in] coderate
* \param [in] preambleLen
* \param [in] fixLen
* \param [in] payloadLen
* \param [in] crcOn
*
* \returns LoRa time-on-air numerator
*/
static uint32_t SX1272GetLoRaTimeOnAirNumerator( uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn );
/*
* SX1272 DIO IRQ callback functions prototype
*/
/*!
* \brief DIO 0 IRQ callback
*/
static void SX1272OnDio0Irq( void* context );
/*!
* \brief DIO 1 IRQ callback
*/
static void SX1272OnDio1Irq( void* context );
/*!
* \brief DIO 2 IRQ callback
*/
static void SX1272OnDio2Irq( void* context );
/*!
* \brief DIO 3 IRQ callback
*/
static void SX1272OnDio3Irq( void* context );
/*!
* \brief DIO 4 IRQ callback
*/
static void SX1272OnDio4Irq( void* context );
/*!
* \brief Tx & Rx timeout timer callback
*/
static void SX1272OnTimeoutIrq( void* context );
/*
* Private global constants
*/
/*!
* Radio hardware registers initialization
*
* \remark RADIO_INIT_REGISTERS_VALUE is defined in sx1272-board.h file
*/
const RadioRegisters_t RadioRegsInit[] = RADIO_INIT_REGISTERS_VALUE;
/*!
* Constant values need to compute the RSSI value
*/
#define RSSI_OFFSET -139
/*!
* Precomputed FSK bandwidth registers values
*/
const FskBandwidth_t FskBandwidths[] =
{
{ 2600 , 0x17 },
{ 3100 , 0x0F },
{ 3900 , 0x07 },
{ 5200 , 0x16 },
{ 6300 , 0x0E },
{ 7800 , 0x06 },
{ 10400 , 0x15 },
{ 12500 , 0x0D },
{ 15600 , 0x05 },
{ 20800 , 0x14 },
{ 25000 , 0x0C },
{ 31300 , 0x04 },
{ 41700 , 0x13 },
{ 50000 , 0x0B },
{ 62500 , 0x03 },
{ 83333 , 0x12 },
{ 100000, 0x0A },
{ 125000, 0x02 },
{ 166700, 0x11 },
{ 200000, 0x09 },
{ 250000, 0x01 },
{ 300000, 0x00 }, // Invalid Bandwidth
};
/*
* Private global variables
*/
/*!
* Radio callbacks variable
*/
static RadioEvents_t *RadioEvents;
/*!
* Reception buffer
*/
static uint8_t RxTxBuffer[RX_TX_BUFFER_SIZE];
/*
* Public global variables
*/
/*!
* Radio hardware and global parameters
*/
SX1272_t SX1272;
/*!
* Hardware DIO IRQ callback initialization
*/
DioIrqHandler *DioIrq[] = { SX1272OnDio0Irq, SX1272OnDio1Irq,
SX1272OnDio2Irq, SX1272OnDio3Irq,
SX1272OnDio4Irq, NULL };
/*!
* Tx and Rx timers
*/
TimerEvent_t TxTimeoutTimer;
TimerEvent_t RxTimeoutTimer;
TimerEvent_t RxTimeoutSyncWord;
/*
* Radio driver functions implementation
*/
void SX1272Init( RadioEvents_t *events )
{
uint8_t i;
RadioEvents = events;
// Initialize driver timeout timers
TimerInit( &TxTimeoutTimer, SX1272OnTimeoutIrq );
TimerInit( &RxTimeoutTimer, SX1272OnTimeoutIrq );
TimerInit( &RxTimeoutSyncWord, SX1272OnTimeoutIrq );
SX1272Reset( );
SX1272SetOpMode( RF_OPMODE_SLEEP );
SX1272IoIrqInit( DioIrq );
for( i = 0; i < sizeof( RadioRegsInit ) / sizeof( RadioRegisters_t ); i++ )
{
SX1272SetModem( RadioRegsInit[i].Modem );
SX1272Write( RadioRegsInit[i].Addr, RadioRegsInit[i].Value );
}
SX1272SetModem( MODEM_FSK );
SX1272.Settings.State = RF_IDLE;
}
RadioState_t SX1272GetStatus( void )
{
return SX1272.Settings.State;
}
void SX1272SetChannel( uint32_t freq )
{
uint32_t freqInPllSteps = SX1272ConvertFreqInHzToPllStep( freq );
SX1272.Settings.Channel = freq;
SX1272Write( REG_FRFMSB, ( uint8_t )( ( freqInPllSteps >> 16 ) & 0xFF ) );
SX1272Write( REG_FRFMID, ( uint8_t )( ( freqInPllSteps >> 8 ) & 0xFF ) );
SX1272Write( REG_FRFLSB, ( uint8_t )( freqInPllSteps & 0xFF ) );
}
bool SX1272IsChannelFree( uint32_t freq, uint32_t rxBandwidth, int16_t rssiThresh, uint32_t maxCarrierSenseTime )
{
bool status = true;
int16_t rssi = 0;
uint32_t carrierSenseTime = 0;
SX1272SetSleep( );
SX1272SetModem( MODEM_FSK );
SX1272SetChannel( freq );
SX1272Write( REG_RXBW, GetFskBandwidthRegValue( rxBandwidth ) );
SX1272Write( REG_AFCBW, GetFskBandwidthRegValue( rxBandwidth ) );
SX1272SetOpMode( RF_OPMODE_RECEIVER );
DelayMs( 1 );
carrierSenseTime = TimerGetCurrentTime( );
// Perform carrier sense for maxCarrierSenseTime
while( TimerGetElapsedTime( carrierSenseTime ) < maxCarrierSenseTime )
{
rssi = SX1272ReadRssi( MODEM_FSK );
if( rssi > rssiThresh )
{
status = false;
break;
}
}
SX1272SetSleep( );
return status;
}
uint32_t SX1272Random( void )
{
uint8_t i;
uint32_t rnd = 0;
/*
* Radio setup for random number generation
*/
// Set LoRa modem ON
SX1272SetModem( MODEM_LORA );
// Disable LoRa modem interrupts
SX1272Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED );
// Set radio in continuous reception
SX1272SetOpMode( RF_OPMODE_RECEIVER );
for( i = 0; i < 32; i++ )
{
DelayMs( 1 );
// Unfiltered RSSI value reading. Only takes the LSB value
rnd |= ( ( uint32_t )SX1272Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) << i;
}
SX1272SetSleep( );
return rnd;
}
void SX1272SetRxConfig( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint32_t bandwidthAfc, uint16_t preambleLen,
uint16_t symbTimeout, bool fixLen,
uint8_t payloadLen,
bool crcOn, bool freqHopOn, uint8_t hopPeriod,
bool iqInverted, bool rxContinuous )
{
SX1272SetModem( modem );
switch( modem )
{
case MODEM_FSK:
{
SX1272.Settings.Fsk.Bandwidth = bandwidth;
SX1272.Settings.Fsk.Datarate = datarate;
SX1272.Settings.Fsk.BandwidthAfc = bandwidthAfc;
SX1272.Settings.Fsk.FixLen = fixLen;
SX1272.Settings.Fsk.PayloadLen = payloadLen;
SX1272.Settings.Fsk.CrcOn = crcOn;
SX1272.Settings.Fsk.IqInverted = iqInverted;
SX1272.Settings.Fsk.RxContinuous = rxContinuous;
SX1272.Settings.Fsk.PreambleLen = preambleLen;
SX1272.Settings.Fsk.RxSingleTimeout = ( uint32_t )symbTimeout * 8000UL / datarate;
uint32_t bitRate = ( uint32_t )( SX1272_XTAL_FREQ / datarate );
SX1272Write( REG_BITRATEMSB, ( uint8_t )( bitRate >> 8 ) );
SX1272Write( REG_BITRATELSB, ( uint8_t )( bitRate & 0xFF ) );
SX1272Write( REG_RXBW, GetFskBandwidthRegValue( bandwidth ) );
SX1272Write( REG_AFCBW, GetFskBandwidthRegValue( bandwidthAfc ) );
SX1272Write( REG_PREAMBLEMSB, ( uint8_t )( ( preambleLen >> 8 ) & 0xFF ) );
SX1272Write( REG_PREAMBLELSB, ( uint8_t )( preambleLen & 0xFF ) );
if( fixLen == 1 )
{
SX1272Write( REG_PAYLOADLENGTH, payloadLen );
}
else
{
SX1272Write( REG_PAYLOADLENGTH, 0xFF ); // Set payload length to the maximum
}
SX1272Write( REG_PACKETCONFIG1,
( SX1272Read( REG_PACKETCONFIG1 ) &
RF_PACKETCONFIG1_CRC_MASK &
RF_PACKETCONFIG1_PACKETFORMAT_MASK ) |
( ( fixLen == 1 ) ? RF_PACKETCONFIG1_PACKETFORMAT_FIXED : RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE ) |
( crcOn << 4 ) );
SX1272Write( REG_PACKETCONFIG2, ( SX1272Read( REG_PACKETCONFIG2 ) | RF_PACKETCONFIG2_DATAMODE_PACKET ) );
}
break;
case MODEM_LORA:
{
SX1272.Settings.LoRa.Bandwidth = bandwidth;
SX1272.Settings.LoRa.Datarate = datarate;
SX1272.Settings.LoRa.Coderate = coderate;
SX1272.Settings.LoRa.PreambleLen = preambleLen;
SX1272.Settings.LoRa.FixLen = fixLen;
SX1272.Settings.LoRa.PayloadLen = payloadLen;
SX1272.Settings.LoRa.CrcOn = crcOn;
SX1272.Settings.LoRa.FreqHopOn = freqHopOn;
SX1272.Settings.LoRa.HopPeriod = hopPeriod;
SX1272.Settings.LoRa.IqInverted = iqInverted;
SX1272.Settings.LoRa.RxContinuous = rxContinuous;
if( datarate > 12 )
{
datarate = 12;
}
else if( datarate < 6 )
{
datarate = 6;
}
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
SX1272.Settings.LoRa.LowDatarateOptimize = 0x01;
}
else
{
SX1272.Settings.LoRa.LowDatarateOptimize = 0x00;
}
SX1272Write( REG_LR_MODEMCONFIG1,
( SX1272Read( REG_LR_MODEMCONFIG1 ) &
RFLR_MODEMCONFIG1_BW_MASK &
RFLR_MODEMCONFIG1_CODINGRATE_MASK &
RFLR_MODEMCONFIG1_IMPLICITHEADER_MASK &
RFLR_MODEMCONFIG1_RXPAYLOADCRC_MASK &
RFLR_MODEMCONFIG1_LOWDATARATEOPTIMIZE_MASK ) |
( bandwidth << 6 ) | ( coderate << 3 ) |
( fixLen << 2 ) | ( crcOn << 1 ) |
SX1272.Settings.LoRa.LowDatarateOptimize );
SX1272Write( REG_LR_MODEMCONFIG2,
( SX1272Read( REG_LR_MODEMCONFIG2 ) &
RFLR_MODEMCONFIG2_SF_MASK &
RFLR_MODEMCONFIG2_SYMBTIMEOUTMSB_MASK ) |
( datarate << 4 ) |
( ( symbTimeout >> 8 ) & ~RFLR_MODEMCONFIG2_SYMBTIMEOUTMSB_MASK ) );
SX1272Write( REG_LR_SYMBTIMEOUTLSB, ( uint8_t )( symbTimeout & 0xFF ) );
SX1272Write( REG_LR_PREAMBLEMSB, ( uint8_t )( ( preambleLen >> 8 ) & 0xFF ) );
SX1272Write( REG_LR_PREAMBLELSB, ( uint8_t )( preambleLen & 0xFF ) );
if( fixLen == 1 )
{
SX1272Write( REG_LR_PAYLOADLENGTH, payloadLen );
}
if( SX1272.Settings.LoRa.FreqHopOn == true )
{
SX1272Write( REG_LR_PLLHOP, ( SX1272Read( REG_LR_PLLHOP ) & RFLR_PLLHOP_FASTHOP_MASK ) | RFLR_PLLHOP_FASTHOP_ON );
SX1272Write( REG_LR_HOPPERIOD, SX1272.Settings.LoRa.HopPeriod );
}
if( datarate == 6 )
{
SX1272Write( REG_LR_DETECTOPTIMIZE,
( SX1272Read( REG_LR_DETECTOPTIMIZE ) &
RFLR_DETECTIONOPTIMIZE_MASK ) |
RFLR_DETECTIONOPTIMIZE_SF6 );
SX1272Write( REG_LR_DETECTIONTHRESHOLD,
RFLR_DETECTIONTHRESH_SF6 );
}
else
{
SX1272Write( REG_LR_DETECTOPTIMIZE,
( SX1272Read( REG_LR_DETECTOPTIMIZE ) &
RFLR_DETECTIONOPTIMIZE_MASK ) |
RFLR_DETECTIONOPTIMIZE_SF7_TO_SF12 );
SX1272Write( REG_LR_DETECTIONTHRESHOLD,
RFLR_DETECTIONTHRESH_SF7_TO_SF12 );
}
}
break;
}
}
void SX1272SetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev,
uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint16_t preambleLen,
bool fixLen, bool crcOn, bool freqHopOn,
uint8_t hopPeriod, bool iqInverted, uint32_t timeout )
{
SX1272SetModem( modem );
SX1272SetRfTxPower( power );
switch( modem )
{
case MODEM_FSK:
{
SX1272.Settings.Fsk.Power = power;
SX1272.Settings.Fsk.Fdev = fdev;
SX1272.Settings.Fsk.Bandwidth = bandwidth;
SX1272.Settings.Fsk.Datarate = datarate;
SX1272.Settings.Fsk.PreambleLen = preambleLen;
SX1272.Settings.Fsk.FixLen = fixLen;
SX1272.Settings.Fsk.CrcOn = crcOn;
SX1272.Settings.Fsk.IqInverted = iqInverted;
SX1272.Settings.Fsk.TxTimeout = timeout;
uint32_t fdevInPllSteps = SX1272ConvertFreqInHzToPllStep( fdev );
SX1272Write( REG_FDEVMSB, ( uint8_t )( fdevInPllSteps >> 8 ) );
SX1272Write( REG_FDEVLSB, ( uint8_t )( fdevInPllSteps & 0xFF ) );
uint32_t bitRate = ( uint32_t )( SX1272_XTAL_FREQ / datarate );
SX1272Write( REG_BITRATEMSB, ( uint8_t )( bitRate >> 8 ) );
SX1272Write( REG_BITRATELSB, ( uint8_t )( bitRate & 0xFF ) );
SX1272Write( REG_PREAMBLEMSB, ( preambleLen >> 8 ) & 0x00FF );
SX1272Write( REG_PREAMBLELSB, preambleLen & 0xFF );
SX1272Write( REG_PACKETCONFIG1,
( SX1272Read( REG_PACKETCONFIG1 ) &
RF_PACKETCONFIG1_CRC_MASK &
RF_PACKETCONFIG1_PACKETFORMAT_MASK ) |
( ( fixLen == 1 ) ? RF_PACKETCONFIG1_PACKETFORMAT_FIXED : RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE ) |
( crcOn << 4 ) );
SX1272Write( REG_PACKETCONFIG2, ( SX1272Read( REG_PACKETCONFIG2 ) | RF_PACKETCONFIG2_DATAMODE_PACKET ) );
}
break;
case MODEM_LORA:
{
SX1272.Settings.LoRa.Power = power;
SX1272.Settings.LoRa.Bandwidth = bandwidth;
SX1272.Settings.LoRa.Datarate = datarate;
SX1272.Settings.LoRa.Coderate = coderate;
SX1272.Settings.LoRa.PreambleLen = preambleLen;
SX1272.Settings.LoRa.FixLen = fixLen;
SX1272.Settings.LoRa.FreqHopOn = freqHopOn;
SX1272.Settings.LoRa.HopPeriod = hopPeriod;
SX1272.Settings.LoRa.CrcOn = crcOn;
SX1272.Settings.LoRa.IqInverted = iqInverted;
SX1272.Settings.LoRa.TxTimeout = timeout;
if( datarate > 12 )
{
datarate = 12;
}
else if( datarate < 6 )
{
datarate = 6;
}
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
SX1272.Settings.LoRa.LowDatarateOptimize = 0x01;
}
else
{
SX1272.Settings.LoRa.LowDatarateOptimize = 0x00;
}
if( SX1272.Settings.LoRa.FreqHopOn == true )
{
SX1272Write( REG_LR_PLLHOP, ( SX1272Read( REG_LR_PLLHOP ) & RFLR_PLLHOP_FASTHOP_MASK ) | RFLR_PLLHOP_FASTHOP_ON );
SX1272Write( REG_LR_HOPPERIOD, SX1272.Settings.LoRa.HopPeriod );
}
SX1272Write( REG_LR_MODEMCONFIG1,
( SX1272Read( REG_LR_MODEMCONFIG1 ) &
RFLR_MODEMCONFIG1_BW_MASK &
RFLR_MODEMCONFIG1_CODINGRATE_MASK &
RFLR_MODEMCONFIG1_IMPLICITHEADER_MASK &
RFLR_MODEMCONFIG1_RXPAYLOADCRC_MASK &
RFLR_MODEMCONFIG1_LOWDATARATEOPTIMIZE_MASK ) |
( bandwidth << 6 ) | ( coderate << 3 ) |
( fixLen << 2 ) | ( crcOn << 1 ) |
SX1272.Settings.LoRa.LowDatarateOptimize );
SX1272Write( REG_LR_MODEMCONFIG2,
( SX1272Read( REG_LR_MODEMCONFIG2 ) &
RFLR_MODEMCONFIG2_SF_MASK ) |
( datarate << 4 ) );
SX1272Write( REG_LR_PREAMBLEMSB, ( preambleLen >> 8 ) & 0x00FF );
SX1272Write( REG_LR_PREAMBLELSB, preambleLen & 0xFF );
if( datarate == 6 )
{
SX1272Write( REG_LR_DETECTOPTIMIZE,
( SX1272Read( REG_LR_DETECTOPTIMIZE ) &
RFLR_DETECTIONOPTIMIZE_MASK ) |
RFLR_DETECTIONOPTIMIZE_SF6 );
SX1272Write( REG_LR_DETECTIONTHRESHOLD,
RFLR_DETECTIONTHRESH_SF6 );
}
else
{
SX1272Write( REG_LR_DETECTOPTIMIZE,
( SX1272Read( REG_LR_DETECTOPTIMIZE ) &
RFLR_DETECTIONOPTIMIZE_MASK ) |
RFLR_DETECTIONOPTIMIZE_SF7_TO_SF12 );
SX1272Write( REG_LR_DETECTIONTHRESHOLD,
RFLR_DETECTIONTHRESH_SF7_TO_SF12 );
}
}
break;
}
}
uint32_t SX1272GetTimeOnAir( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
uint32_t numerator = 0;
uint32_t denominator = 1;
switch( modem )
{
case MODEM_FSK:
{
numerator = 1000U * SX1272GetGfskTimeOnAirNumerator( preambleLen, fixLen, payloadLen, crcOn );
denominator = datarate;
}
break;
case MODEM_LORA:
{
numerator = 1000U * SX1272GetLoRaTimeOnAirNumerator( bandwidth, datarate, coderate, preambleLen, fixLen,
payloadLen, crcOn );
denominator = SX1272GetLoRaBandwidthInHz( bandwidth );
}
break;
}
// Perform integral ceil()
return ( numerator + denominator - 1 ) / denominator;
}
void SX1272Send( uint8_t *buffer, uint8_t size )
{
uint32_t txTimeout = 0;
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
{
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = size;
if( SX1272.Settings.Fsk.FixLen == false )
{
SX1272WriteFifo( ( uint8_t* )&size, 1 );
}
else
{
SX1272Write( REG_PAYLOADLENGTH, size );
}
if( ( size > 0 ) && ( size <= 64 ) )
{
SX1272.Settings.FskPacketHandler.ChunkSize = size;
}
else
{
memcpy1( RxTxBuffer, buffer, size );
SX1272.Settings.FskPacketHandler.ChunkSize = 32;
}
// Write payload buffer
SX1272WriteFifo( buffer, SX1272.Settings.FskPacketHandler.ChunkSize );
SX1272.Settings.FskPacketHandler.NbBytes += SX1272.Settings.FskPacketHandler.ChunkSize;
txTimeout = SX1272.Settings.Fsk.TxTimeout;
}
break;
case MODEM_LORA:
{
if( SX1272.Settings.LoRa.IqInverted == true )
{
SX1272Write( REG_LR_INVERTIQ, ( ( SX1272Read( REG_LR_INVERTIQ ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK ) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_ON ) );
SX1272Write( REG_LR_INVERTIQ2, RFLR_INVERTIQ2_ON );
}
else
{
SX1272Write( REG_LR_INVERTIQ, ( ( SX1272Read( REG_LR_INVERTIQ ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK ) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_OFF ) );
SX1272Write( REG_LR_INVERTIQ2, RFLR_INVERTIQ2_OFF );
}
SX1272.Settings.LoRaPacketHandler.Size = size;
// Initializes the payload size
SX1272Write( REG_LR_PAYLOADLENGTH, size );
// Full buffer used for Tx
SX1272Write( REG_LR_FIFOTXBASEADDR, 0 );
SX1272Write( REG_LR_FIFOADDRPTR, 0 );
// FIFO operations can not take place in Sleep mode
if( ( SX1272Read( REG_OPMODE ) & ~RF_OPMODE_MASK ) == RF_OPMODE_SLEEP )
{
SX1272SetStby( );
DelayMs( 1 );
}
// Write payload buffer
SX1272WriteFifo( buffer, size );
txTimeout = SX1272.Settings.LoRa.TxTimeout;
}
break;
}
SX1272SetTx( txTimeout );
}
void SX1272SetSleep( void )
{
TimerStop( &RxTimeoutTimer );
TimerStop( &TxTimeoutTimer );
TimerStop( &RxTimeoutSyncWord );
SX1272SetOpMode( RF_OPMODE_SLEEP );
// Disable TCXO radio is in SLEEP mode
SX1272SetBoardTcxo( false );
SX1272.Settings.State = RF_IDLE;
}
void SX1272SetStby( void )
{
TimerStop( &RxTimeoutTimer );
TimerStop( &TxTimeoutTimer );
TimerStop( &RxTimeoutSyncWord );
SX1272SetOpMode( RF_OPMODE_STANDBY );
SX1272.Settings.State = RF_IDLE;
}
void SX1272SetRx( uint32_t timeout )
{
bool rxContinuous = false;
TimerStop( &TxTimeoutTimer );
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
{
rxContinuous = SX1272.Settings.Fsk.RxContinuous;
// DIO0=PayloadReady
// DIO1=FifoLevel
// DIO2=SyncAddr
// DIO3=FifoEmpty
// DIO4=Preamble
// DIO5=ModeReady
SX1272Write( REG_DIOMAPPING1, ( SX1272Read( REG_DIOMAPPING1 ) & RF_DIOMAPPING1_DIO0_MASK &
RF_DIOMAPPING1_DIO1_MASK &
RF_DIOMAPPING1_DIO2_MASK ) |
RF_DIOMAPPING1_DIO0_00 |
RF_DIOMAPPING1_DIO1_00 |
RF_DIOMAPPING1_DIO2_11 );
SX1272Write( REG_DIOMAPPING2, ( SX1272Read( REG_DIOMAPPING2 ) & RF_DIOMAPPING2_DIO4_MASK &
RF_DIOMAPPING2_MAP_MASK ) |
RF_DIOMAPPING2_DIO4_11 |
RF_DIOMAPPING2_MAP_PREAMBLEDETECT );
SX1272.Settings.FskPacketHandler.FifoThresh = SX1272Read( REG_FIFOTHRESH ) & 0x3F;
SX1272Write( REG_RXCONFIG, RF_RXCONFIG_AFCAUTO_ON | RF_RXCONFIG_AGCAUTO_ON | RF_RXCONFIG_RXTRIGER_PREAMBLEDETECT );
SX1272.Settings.FskPacketHandler.PreambleDetected = false;
SX1272.Settings.FskPacketHandler.SyncWordDetected = false;
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = 0;
}
break;
case MODEM_LORA:
{
if( SX1272.Settings.LoRa.IqInverted == true )
{
SX1272Write( REG_LR_INVERTIQ, ( ( SX1272Read( REG_LR_INVERTIQ ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK ) | RFLR_INVERTIQ_RX_ON | RFLR_INVERTIQ_TX_OFF ) );
SX1272Write( REG_LR_INVERTIQ2, RFLR_INVERTIQ2_ON );
}
else
{
SX1272Write( REG_LR_INVERTIQ, ( ( SX1272Read( REG_LR_INVERTIQ ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK ) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_OFF ) );
SX1272Write( REG_LR_INVERTIQ2, RFLR_INVERTIQ2_OFF );
}
rxContinuous = SX1272.Settings.LoRa.RxContinuous;
if( SX1272.Settings.LoRa.FreqHopOn == true )
{
SX1272Write( REG_LR_IRQFLAGSMASK, //RFLR_IRQFLAGS_RXTIMEOUT |
//RFLR_IRQFLAGS_RXDONE |
//RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
//RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED );
// DIO0=RxDone, DIO2=FhssChangeChannel
SX1272Write( REG_DIOMAPPING1, ( SX1272Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK & RFLR_DIOMAPPING1_DIO2_MASK ) | RFLR_DIOMAPPING1_DIO0_00 | RFLR_DIOMAPPING1_DIO2_00 );
}
else
{
SX1272Write( REG_LR_IRQFLAGSMASK, //RFLR_IRQFLAGS_RXTIMEOUT |
//RFLR_IRQFLAGS_RXDONE |
//RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED );
// DIO0=RxDone
SX1272Write( REG_DIOMAPPING1, ( SX1272Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK ) | RFLR_DIOMAPPING1_DIO0_00 );
}
SX1272Write( REG_LR_FIFORXBASEADDR, 0 );
SX1272Write( REG_LR_FIFOADDRPTR, 0 );
}
break;
}
memset( RxTxBuffer, 0, ( size_t )RX_TX_BUFFER_SIZE );
SX1272.Settings.State = RF_RX_RUNNING;
if( timeout != 0 )
{
TimerSetValue( &RxTimeoutTimer, timeout );
TimerStart( &RxTimeoutTimer );
}
if( SX1272.Settings.Modem == MODEM_FSK )
{
SX1272SetOpMode( RF_OPMODE_RECEIVER );
if( rxContinuous == false )
{
TimerSetValue( &RxTimeoutSyncWord, SX1272.Settings.Fsk.RxSingleTimeout );
TimerStart( &RxTimeoutSyncWord );
}
}
else
{
if( rxContinuous == true )
{
SX1272SetOpMode( RFLR_OPMODE_RECEIVER );
}
else
{
SX1272SetOpMode( RFLR_OPMODE_RECEIVER_SINGLE );
}
}
}
static void SX1272SetTx( uint32_t timeout )
{
TimerStop( &RxTimeoutTimer );
TimerSetValue( &TxTimeoutTimer, timeout );
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
{
// DIO0=PacketSent
// DIO1=FifoLevel
// DIO2=FifoFull
// DIO3=FifoEmpty
// DIO4=LowBat
// DIO5=ModeReady
SX1272Write( REG_DIOMAPPING1, ( SX1272Read( REG_DIOMAPPING1 ) & RF_DIOMAPPING1_DIO0_MASK &
RF_DIOMAPPING1_DIO1_MASK &
RF_DIOMAPPING1_DIO2_MASK ) );
SX1272Write( REG_DIOMAPPING2, ( SX1272Read( REG_DIOMAPPING2 ) & RF_DIOMAPPING2_DIO4_MASK &
RF_DIOMAPPING2_MAP_MASK ) );
SX1272.Settings.FskPacketHandler.FifoThresh = SX1272Read( REG_FIFOTHRESH ) & 0x3F;
}
break;
case MODEM_LORA:
{
if( SX1272.Settings.LoRa.FreqHopOn == true )
{
SX1272Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
//RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
//RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED );
// DIO0=TxDone, DIO2=FhssChangeChannel
SX1272Write( REG_DIOMAPPING1, ( SX1272Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK & RFLR_DIOMAPPING1_DIO2_MASK ) | RFLR_DIOMAPPING1_DIO0_01 | RFLR_DIOMAPPING1_DIO2_00 );
}
else
{
SX1272Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
//RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED );
// DIO0=TxDone
SX1272Write( REG_DIOMAPPING1, ( SX1272Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK ) | RFLR_DIOMAPPING1_DIO0_01 );
}
}
break;
}
SX1272.Settings.State = RF_TX_RUNNING;
TimerStart( &TxTimeoutTimer );
SX1272SetOpMode( RF_OPMODE_TRANSMITTER );
}
void SX1272StartCad( void )
{
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
{
}
break;
case MODEM_LORA:
{
SX1272Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
//RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL // |
//RFLR_IRQFLAGS_CADDETECTED
);
// DIO3=CADDone
SX1272Write( REG_DIOMAPPING1, ( SX1272Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO3_MASK ) | RFLR_DIOMAPPING1_DIO3_00 );
SX1272.Settings.State = RF_CAD;
SX1272SetOpMode( RFLR_OPMODE_CAD );
}
break;
default:
break;
}
}
void SX1272SetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time )
{
uint32_t timeout = ( uint32_t )time * 1000;
SX1272SetChannel( freq );
SX1272SetTxConfig( MODEM_FSK, power, 0, 0, 4800, 0, 5, false, false, 0, 0, 0, timeout );
SX1272Write( REG_PACKETCONFIG2, ( SX1272Read( REG_PACKETCONFIG2 ) & RF_PACKETCONFIG2_DATAMODE_MASK ) );
// Disable radio interrupts
SX1272Write( REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_11 | RF_DIOMAPPING1_DIO1_11 );
SX1272Write( REG_DIOMAPPING2, RF_DIOMAPPING2_DIO4_10 | RF_DIOMAPPING2_DIO5_10 );
TimerSetValue( &TxTimeoutTimer, timeout );
SX1272.Settings.State = RF_TX_RUNNING;
TimerStart( &TxTimeoutTimer );
SX1272SetOpMode( RF_OPMODE_TRANSMITTER );
}
int16_t SX1272ReadRssi( RadioModems_t modem )
{
int16_t rssi = 0;
switch( modem )
{
case MODEM_FSK:
rssi = -( SX1272Read( REG_RSSIVALUE ) >> 1 );
break;
case MODEM_LORA:
rssi = RSSI_OFFSET + SX1272Read( REG_LR_RSSIVALUE );
break;
default:
rssi = -1;
break;
}
return rssi;
}
static void SX1272SetOpMode( uint8_t opMode )
{
#if defined( USE_RADIO_DEBUG )
switch( opMode )
{
case RF_OPMODE_TRANSMITTER:
SX1272DbgPinTxWrite( 1 );
SX1272DbgPinRxWrite( 0 );
break;
case RF_OPMODE_RECEIVER:
case RFLR_OPMODE_RECEIVER_SINGLE:
SX1272DbgPinTxWrite( 0 );
SX1272DbgPinRxWrite( 1 );
break;
default:
SX1272DbgPinTxWrite( 0 );
SX1272DbgPinRxWrite( 0 );
break;
}
#endif
if( opMode == RF_OPMODE_SLEEP )
{
SX1272SetAntSwLowPower( true );
}
else
{
// Enable TCXO if operating mode different from SLEEP.
SX1272SetBoardTcxo( true );
SX1272SetAntSwLowPower( false );
SX1272SetAntSw( opMode );
}
SX1272Write( REG_OPMODE, ( SX1272Read( REG_OPMODE ) & RF_OPMODE_MASK ) | opMode );
}
void SX1272SetModem( RadioModems_t modem )
{
if( ( SX1272Read( REG_OPMODE ) & RFLR_OPMODE_LONGRANGEMODE_ON ) != 0 )
{
SX1272.Settings.Modem = MODEM_LORA;
}
else
{
SX1272.Settings.Modem = MODEM_FSK;
}
if( SX1272.Settings.Modem == modem )
{
return;
}
SX1272.Settings.Modem = modem;
switch( SX1272.Settings.Modem )
{
default:
case MODEM_FSK:
SX1272SetOpMode( RF_OPMODE_SLEEP );
SX1272Write( REG_OPMODE, ( SX1272Read( REG_OPMODE ) & RFLR_OPMODE_LONGRANGEMODE_MASK ) | RFLR_OPMODE_LONGRANGEMODE_OFF );
SX1272Write( REG_DIOMAPPING1, 0x00 );
SX1272Write( REG_DIOMAPPING2, 0x30 ); // DIO5=ModeReady
break;
case MODEM_LORA:
SX1272SetOpMode( RF_OPMODE_SLEEP );
SX1272Write( REG_OPMODE, ( SX1272Read( REG_OPMODE ) & RFLR_OPMODE_LONGRANGEMODE_MASK ) | RFLR_OPMODE_LONGRANGEMODE_ON );
SX1272Write( REG_DIOMAPPING1, 0x00 );
SX1272Write( REG_DIOMAPPING2, 0x00 );
break;
}
}
void SX1272Write( uint32_t addr, uint8_t data )
{
SX1272WriteBuffer( addr, &data, 1 );
}
uint8_t SX1272Read( uint32_t addr )
{
uint8_t data;
SX1272ReadBuffer( addr, &data, 1 );
return data;
}
void SX1272WriteBuffer( uint32_t addr, uint8_t *buffer, uint8_t size )
{
uint8_t i;
//NSS = 0;
GpioWrite( &SX1272.Spi.Nss, 0 );
SpiInOut( &SX1272.Spi, addr | 0x80 );
for( i = 0; i < size; i++ )
{
SpiInOut( &SX1272.Spi, buffer[i] );
}
//NSS = 1;
GpioWrite( &SX1272.Spi.Nss, 1 );
}
void SX1272ReadBuffer( uint32_t addr, uint8_t *buffer, uint8_t size )
{
uint8_t i;
//NSS = 0;
GpioWrite( &SX1272.Spi.Nss, 0 );
SpiInOut( &SX1272.Spi, addr & 0x7F );
for( i = 0; i < size; i++ )
{
buffer[i] = SpiInOut( &SX1272.Spi, 0 );
}
//NSS = 1;
GpioWrite( &SX1272.Spi.Nss, 1 );
}
static void SX1272WriteFifo( uint8_t *buffer, uint8_t size )
{
SX1272WriteBuffer( 0, buffer, size );
}
static void SX1272ReadFifo( uint8_t *buffer, uint8_t size )
{
SX1272ReadBuffer( 0, buffer, size );
}
void SX1272SetMaxPayloadLength( RadioModems_t modem, uint8_t max )
{
SX1272SetModem( modem );
switch( modem )
{
case MODEM_FSK:
if( SX1272.Settings.Fsk.FixLen == false )
{
SX1272Write( REG_PAYLOADLENGTH, max );
}
break;
case MODEM_LORA:
SX1272Write( REG_LR_PAYLOADMAXLENGTH, max );
break;
}
}
void SX1272SetPublicNetwork( bool enable )
{
SX1272SetModem( MODEM_LORA );
SX1272.Settings.LoRa.PublicNetwork = enable;
if( enable == true )
{
// Change LoRa modem SyncWord
SX1272Write( REG_LR_SYNCWORD, LORA_MAC_PUBLIC_SYNCWORD );
}
else
{
// Change LoRa modem SyncWord
SX1272Write( REG_LR_SYNCWORD, LORA_MAC_PRIVATE_SYNCWORD );
}
}
uint32_t SX1272GetWakeupTime( void )
{
return SX1272GetBoardTcxoWakeupTime( ) + RADIO_WAKEUP_TIME;
}
static uint32_t SX1272ConvertPllStepToFreqInHz( uint32_t pllSteps )
{
uint32_t freqInHzInt;
uint32_t freqInHzFrac;
// freqInHz = pllSteps * ( SX1272_XTAL_FREQ / 2^19 )
// Get integer and fractional parts of the frequency computed with a PLL step scaled value
freqInHzInt = pllSteps >> SX1272_PLL_STEP_SHIFT_AMOUNT;
freqInHzFrac = pllSteps - ( freqInHzInt << SX1272_PLL_STEP_SHIFT_AMOUNT );
// Apply the scaling factor to retrieve a frequency in Hz (+ ceiling)
return freqInHzInt * SX1272_PLL_STEP_SCALED +
( ( freqInHzFrac * SX1272_PLL_STEP_SCALED + ( 128 ) ) >> SX1272_PLL_STEP_SHIFT_AMOUNT );
}
static uint32_t SX1272ConvertFreqInHzToPllStep( uint32_t freqInHz )
{
uint32_t stepsInt;
uint32_t stepsFrac;
// pllSteps = freqInHz / (SX1272_XTAL_FREQ / 2^19 )
// Get integer and fractional parts of the frequency computed with a PLL step scaled value
stepsInt = freqInHz / SX1272_PLL_STEP_SCALED;
stepsFrac = freqInHz - ( stepsInt * SX1272_PLL_STEP_SCALED );
// Apply the scaling factor to retrieve a frequency in Hz (+ ceiling)
return ( stepsInt << SX1272_PLL_STEP_SHIFT_AMOUNT ) +
( ( ( stepsFrac << SX1272_PLL_STEP_SHIFT_AMOUNT ) + ( SX1272_PLL_STEP_SCALED >> 1 ) ) /
SX1272_PLL_STEP_SCALED );
}
static uint8_t GetFskBandwidthRegValue( uint32_t bw )
{
uint8_t i;
for( i = 0; i < ( sizeof( FskBandwidths ) / sizeof( FskBandwidth_t ) ) - 1; i++ )
{
if( ( bw >= FskBandwidths[i].bandwidth ) && ( bw < FskBandwidths[i + 1].bandwidth ) )
{
return FskBandwidths[i].RegValue;
}
}
// ERROR: Value not found
while( 1 );
}
static uint32_t SX1272GetLoRaBandwidthInHz( uint32_t bw )
{
uint32_t bandwidthInHz = 0;
switch( bw )
{
case 0: // 125 kHz
bandwidthInHz = 125000UL;
break;
case 1: // 250 kHz
bandwidthInHz = 250000UL;
break;
case 2: // 500 kHz
bandwidthInHz = 500000UL;
break;
}
return bandwidthInHz;
}
static uint32_t SX1272GetGfskTimeOnAirNumerator( uint16_t preambleLen, bool fixLen,
uint8_t payloadLen, bool crcOn )
{
const uint8_t syncWordLength = 3;
return ( preambleLen << 3 ) +
( ( fixLen == false ) ? 8 : 0 ) +
( syncWordLength << 3 ) +
( ( payloadLen +
( 0 ) + // Address filter size
( ( crcOn == true ) ? 2 : 0 )
) << 3
);
}
static uint32_t SX1272GetLoRaTimeOnAirNumerator( uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
int32_t crDenom = coderate + 4;
bool lowDatareOptimize = false;
// Ensure that the preamble length is at least 12 symbols when using SF5 or
// SF6
if( ( datarate == 5 ) || ( datarate == 6 ) )
{
if( preambleLen < 12 )
{
preambleLen = 12;
}
}
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
lowDatareOptimize = true;
}
int32_t ceilDenominator;
int32_t ceilNumerator = ( payloadLen << 3 ) +
( crcOn ? 16 : 0 ) -
( 4 * datarate ) +
( fixLen ? 0 : 20 );
if( datarate <= 6 )
{
ceilDenominator = 4 * datarate;
}
else
{
ceilNumerator += 8;
if( lowDatareOptimize == true )
{
ceilDenominator = 4 * ( datarate - 2 );
}
else
{
ceilDenominator = 4 * datarate;
}
}
if( ceilNumerator < 0 )
{
ceilNumerator = 0;
}
// Perform integral ceil()
int32_t intermediate =
( ( ceilNumerator + ceilDenominator - 1 ) / ceilDenominator ) * crDenom + preambleLen + 12;
if( datarate <= 6 )
{
intermediate += 2;
}
return ( uint32_t )( ( 4 * intermediate + 1 ) * ( 1 << ( datarate - 2 ) ) );
}
static void SX1272OnTimeoutIrq( void* context )
{
switch( SX1272.Settings.State )
{
case RF_RX_RUNNING:
if( SX1272.Settings.Modem == MODEM_FSK )
{
SX1272.Settings.FskPacketHandler.PreambleDetected = false;
SX1272.Settings.FskPacketHandler.SyncWordDetected = false;
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = 0;
// Clear Irqs
SX1272Write( REG_IRQFLAGS1, RF_IRQFLAGS1_RSSI |
RF_IRQFLAGS1_PREAMBLEDETECT |
RF_IRQFLAGS1_SYNCADDRESSMATCH );
SX1272Write( REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN );
if( SX1272.Settings.Fsk.RxContinuous == true )
{
// Continuous mode restart Rx chain
SX1272Write( REG_RXCONFIG, SX1272Read( REG_RXCONFIG ) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK );
}
else
{
SX1272.Settings.State = RF_IDLE;
TimerStop( &RxTimeoutSyncWord );
}
}
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
break;
case RF_TX_RUNNING:
// Tx timeout shouldn't happen.
// Reported issue of SPI data corruption resulting in TX TIMEOUT
// is NOT related to a bug in radio transceiver.
// It is mainly caused by improper PCB routing of SPI lines and/or
// violation of SPI specifications.
// To mitigate redesign, Semtech offers a workaround which resets
// the radio transceiver and putting it into a known state.
// BEGIN WORKAROUND
// Reset the radio
SX1272Reset( );
// Initialize radio default values
SX1272SetOpMode( RF_OPMODE_SLEEP );
for( uint8_t i = 0; i < sizeof( RadioRegsInit ) / sizeof( RadioRegisters_t ); i++ )
{
SX1272SetModem( RadioRegsInit[i].Modem );
SX1272Write( RadioRegsInit[i].Addr, RadioRegsInit[i].Value );
}
SX1272SetModem( MODEM_FSK );
// Restore previous network type setting.
SX1272SetPublicNetwork( SX1272.Settings.LoRa.PublicNetwork );
// END WORKAROUND
SX1272.Settings.State = RF_IDLE;
if( ( RadioEvents != NULL ) && ( RadioEvents->TxTimeout != NULL ) )
{
RadioEvents->TxTimeout( );
}
break;
default:
break;
}
}
static void SX1272OnDio0Irq( void* context )
{
volatile uint8_t irqFlags = 0;
switch( SX1272.Settings.State )
{
case RF_RX_RUNNING:
//TimerStop( &RxTimeoutTimer );
// RxDone interrupt
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
if( SX1272.Settings.Fsk.CrcOn == true )
{
irqFlags = SX1272Read( REG_IRQFLAGS2 );
if( ( irqFlags & RF_IRQFLAGS2_CRCOK ) != RF_IRQFLAGS2_CRCOK )
{
// Clear Irqs
SX1272Write( REG_IRQFLAGS1, RF_IRQFLAGS1_RSSI |
RF_IRQFLAGS1_PREAMBLEDETECT |
RF_IRQFLAGS1_SYNCADDRESSMATCH );
SX1272Write( REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN );
TimerStop( &RxTimeoutTimer );
if( SX1272.Settings.Fsk.RxContinuous == false )
{
TimerStop( &RxTimeoutSyncWord );
SX1272.Settings.State = RF_IDLE;
}
else
{
// Continuous mode restart Rx chain
SX1272Write( REG_RXCONFIG, SX1272Read( REG_RXCONFIG ) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK );
}
if( ( RadioEvents != NULL ) && ( RadioEvents->RxError != NULL ) )
{
RadioEvents->RxError( );
}
SX1272.Settings.FskPacketHandler.PreambleDetected = false;
SX1272.Settings.FskPacketHandler.SyncWordDetected = false;
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = 0;
break;
}
}
// Read received packet size
if( ( SX1272.Settings.FskPacketHandler.Size == 0 ) && ( SX1272.Settings.FskPacketHandler.NbBytes == 0 ) )
{
if( SX1272.Settings.Fsk.FixLen == false )
{
SX1272ReadFifo( ( uint8_t* )&SX1272.Settings.FskPacketHandler.Size, 1 );
}
else
{
SX1272.Settings.FskPacketHandler.Size = SX1272Read( REG_PAYLOADLENGTH );
}
SX1272ReadFifo( RxTxBuffer + SX1272.Settings.FskPacketHandler.NbBytes, SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes );
SX1272.Settings.FskPacketHandler.NbBytes += ( SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes );
}
else
{
SX1272ReadFifo( RxTxBuffer + SX1272.Settings.FskPacketHandler.NbBytes, SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes );
SX1272.Settings.FskPacketHandler.NbBytes += ( SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes );
}
TimerStop( &RxTimeoutTimer );
if( SX1272.Settings.Fsk.RxContinuous == false )
{
SX1272.Settings.State = RF_IDLE;
TimerStop( &RxTimeoutSyncWord );
}
else
{
// Continuous mode restart Rx chain
SX1272Write( REG_RXCONFIG, SX1272Read( REG_RXCONFIG ) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK );
}
if( ( RadioEvents != NULL ) && ( RadioEvents->RxDone != NULL ) )
{
RadioEvents->RxDone( RxTxBuffer, SX1272.Settings.FskPacketHandler.Size, SX1272.Settings.FskPacketHandler.RssiValue, 0 );
}
SX1272.Settings.FskPacketHandler.PreambleDetected = false;
SX1272.Settings.FskPacketHandler.SyncWordDetected = false;
SX1272.Settings.FskPacketHandler.NbBytes = 0;
SX1272.Settings.FskPacketHandler.Size = 0;
break;
case MODEM_LORA:
{
// Clear Irq
SX1272Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_RXDONE );
irqFlags = SX1272Read( REG_LR_IRQFLAGS );
if( ( irqFlags & RFLR_IRQFLAGS_PAYLOADCRCERROR_MASK ) == RFLR_IRQFLAGS_PAYLOADCRCERROR )
{
// Clear Irq
SX1272Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_PAYLOADCRCERROR );
if( SX1272.Settings.LoRa.RxContinuous == false )
{
SX1272.Settings.State = RF_IDLE;
}
TimerStop( &RxTimeoutTimer );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxError != NULL ) )
{
RadioEvents->RxError( );
}
break;
}
// Returns SNR value [dB] rounded to the nearest integer value
SX1272.Settings.LoRaPacketHandler.SnrValue = ( ( ( int8_t )SX1272Read( REG_LR_PKTSNRVALUE ) ) + 2 ) >> 2;
int16_t rssi = SX1272Read( REG_LR_PKTRSSIVALUE );
if( SX1272.Settings.LoRaPacketHandler.SnrValue < 0 )
{
SX1272.Settings.LoRaPacketHandler.RssiValue = RSSI_OFFSET + rssi + ( rssi >> 4 ) +
SX1272.Settings.LoRaPacketHandler.SnrValue;
}
else
{
SX1272.Settings.LoRaPacketHandler.RssiValue = RSSI_OFFSET + rssi + ( rssi >> 4 );
}
SX1272.Settings.LoRaPacketHandler.Size = SX1272Read( REG_LR_RXNBBYTES );
SX1272Write( REG_LR_FIFOADDRPTR, SX1272Read( REG_LR_FIFORXCURRENTADDR ) );
SX1272ReadFifo( RxTxBuffer, SX1272.Settings.LoRaPacketHandler.Size );
if( SX1272.Settings.LoRa.RxContinuous == false )
{
SX1272.Settings.State = RF_IDLE;
}
TimerStop( &RxTimeoutTimer );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxDone != NULL ) )
{
RadioEvents->RxDone( RxTxBuffer, SX1272.Settings.LoRaPacketHandler.Size, SX1272.Settings.LoRaPacketHandler.RssiValue, SX1272.Settings.LoRaPacketHandler.SnrValue );
}
}
break;
default:
break;
}
break;
case RF_TX_RUNNING:
TimerStop( &TxTimeoutTimer );
// TxDone interrupt
switch( SX1272.Settings.Modem )
{
case MODEM_LORA:
// Clear Irq
SX1272Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_TXDONE );
// Intentional fall through
case MODEM_FSK:
default:
SX1272.Settings.State = RF_IDLE;
if( ( RadioEvents != NULL ) && ( RadioEvents->TxDone != NULL ) )
{
RadioEvents->TxDone( );
}
break;
}
break;
default:
break;
}
}
static void SX1272OnDio1Irq( void* context )
{
switch( SX1272.Settings.State )
{
case RF_RX_RUNNING:
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
// Check FIFO level DIO1 pin state
//
// As DIO1 interrupt is triggered when a rising or a falling edge is detected the IRQ handler must
// verify DIO1 pin state in order to decide if something has to be done.
// When radio is operating in FSK reception mode a rising edge must be detected in order to handle the
// IRQ.
if( SX1272GetDio1PinState( ) == 0 )
{
break;
}
// Stop timer
TimerStop( &RxTimeoutSyncWord );
// FifoLevel interrupt
// Read received packet size
if( ( SX1272.Settings.FskPacketHandler.Size == 0 ) && ( SX1272.Settings.FskPacketHandler.NbBytes == 0 ) )
{
if( SX1272.Settings.Fsk.FixLen == false )
{
SX1272ReadFifo( ( uint8_t* )&SX1272.Settings.FskPacketHandler.Size, 1 );
}
else
{
SX1272.Settings.FskPacketHandler.Size = SX1272Read( REG_PAYLOADLENGTH );
}
}
// ERRATA 3.1 - PayloadReady Set for 31.25ns if FIFO is Empty
//
// When FifoLevel interrupt is used to offload the
// FIFO, the microcontroller should monitor both
// PayloadReady and FifoLevel interrupts, and
// read only (FifoThreshold-1) bytes off the FIFO
// when FifoLevel fires
if( ( SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes ) >= SX1272.Settings.FskPacketHandler.FifoThresh )
{
SX1272ReadFifo( ( RxTxBuffer + SX1272.Settings.FskPacketHandler.NbBytes ), SX1272.Settings.FskPacketHandler.FifoThresh - 1 );
SX1272.Settings.FskPacketHandler.NbBytes += SX1272.Settings.FskPacketHandler.FifoThresh - 1;
}
else
{
SX1272ReadFifo( ( RxTxBuffer + SX1272.Settings.FskPacketHandler.NbBytes ), SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes );
SX1272.Settings.FskPacketHandler.NbBytes += ( SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes );
}
break;
case MODEM_LORA:
// Check RxTimeout DIO1 pin state
//
// DIO1 irq is setup to be triggered on rsing and falling edges
// As DIO1 interrupt is triggered when a rising or a falling edge is detected the IRQ handler must
// verify DIO1 pin state in order to decide if something has to be done.
// When radio is operating in LoRa reception mode a rising edge must be detected in order to handle the
// IRQ.
if( SX1272GetDio1PinState( ) == 0 )
{
break;
}
// Sync time out
TimerStop( &RxTimeoutTimer );
// Clear Irq
SX1272Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_RXTIMEOUT );
SX1272.Settings.State = RF_IDLE;
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
break;
default:
break;
}
break;
case RF_TX_RUNNING:
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
// Check FIFO level DIO1 pin state
//
// As DIO1 interrupt is triggered when a rising or a falling edge is detected the IRQ handler must
// verify DIO1 pin state in order to decide if something has to be done.
// When radio is operating in FSK transmission mode a falling edge must be detected in order to handle
// the IRQ.
if( SX1272GetDio1PinState( ) == 1 )
{
break;
}
// FifoLevel interrupt
if( ( SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes ) > SX1272.Settings.FskPacketHandler.ChunkSize )
{
SX1272WriteFifo( ( RxTxBuffer + SX1272.Settings.FskPacketHandler.NbBytes ), SX1272.Settings.FskPacketHandler.ChunkSize );
SX1272.Settings.FskPacketHandler.NbBytes += SX1272.Settings.FskPacketHandler.ChunkSize;
}
else
{
// Write the last chunk of data
SX1272WriteFifo( RxTxBuffer + SX1272.Settings.FskPacketHandler.NbBytes, SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes );
SX1272.Settings.FskPacketHandler.NbBytes += SX1272.Settings.FskPacketHandler.Size - SX1272.Settings.FskPacketHandler.NbBytes;
}
break;
case MODEM_LORA:
break;
default:
break;
}
break;
default:
break;
}
}
static void SX1272OnDio2Irq( void* context )
{
switch( SX1272.Settings.State )
{
case RF_RX_RUNNING:
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
// Checks if DIO4 is connected. If it is not PreambleDetected is set to true.
if( SX1272.DIO4.port == NULL )
{
SX1272.Settings.FskPacketHandler.PreambleDetected = true;
}
if( ( SX1272.Settings.FskPacketHandler.PreambleDetected != 0 ) && ( SX1272.Settings.FskPacketHandler.SyncWordDetected == 0 ) )
{
TimerStop( &RxTimeoutSyncWord );
SX1272.Settings.FskPacketHandler.SyncWordDetected = true;
SX1272.Settings.FskPacketHandler.RssiValue = -( SX1272Read( REG_RSSIVALUE ) >> 1 );
SX1272.Settings.FskPacketHandler.AfcValue = ( int32_t )SX1272ConvertPllStepToFreqInHz( ( ( uint16_t )SX1272Read( REG_AFCMSB ) << 8 ) |
( uint16_t )SX1272Read( REG_AFCLSB ) );
SX1272.Settings.FskPacketHandler.RxGain = ( SX1272Read( REG_LNA ) >> 5 ) & 0x07;
}
break;
case MODEM_LORA:
if( SX1272.Settings.LoRa.FreqHopOn == true )
{
// Clear Irq
SX1272Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL );
if( ( RadioEvents != NULL ) && ( RadioEvents->FhssChangeChannel != NULL ) )
{
RadioEvents->FhssChangeChannel( ( SX1272Read( REG_LR_HOPCHANNEL ) & RFLR_HOPCHANNEL_CHANNEL_MASK ) );
}
}
break;
default:
break;
}
break;
case RF_TX_RUNNING:
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
break;
case MODEM_LORA:
if( SX1272.Settings.LoRa.FreqHopOn == true )
{
// Clear Irq
SX1272Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL );
if( ( RadioEvents != NULL ) && ( RadioEvents->FhssChangeChannel != NULL ) )
{
RadioEvents->FhssChangeChannel( ( SX1272Read( REG_LR_HOPCHANNEL ) & RFLR_HOPCHANNEL_CHANNEL_MASK ) );
}
}
break;
default:
break;
}
break;
default:
break;
}
}
static void SX1272OnDio3Irq( void* context )
{
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
break;
case MODEM_LORA:
if( ( SX1272Read( REG_LR_IRQFLAGS ) & RFLR_IRQFLAGS_CADDETECTED ) == RFLR_IRQFLAGS_CADDETECTED )
{
// Clear Irq
SX1272Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_CADDETECTED | RFLR_IRQFLAGS_CADDONE );
if( ( RadioEvents != NULL ) && ( RadioEvents->CadDone != NULL ) )
{
RadioEvents->CadDone( true );
}
}
else
{
// Clear Irq
SX1272Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_CADDONE );
if( ( RadioEvents != NULL ) && ( RadioEvents->CadDone != NULL ) )
{
RadioEvents->CadDone( false );
}
}
break;
default:
break;
}
}
static void SX1272OnDio4Irq( void* context )
{
switch( SX1272.Settings.Modem )
{
case MODEM_FSK:
{
if( SX1272.Settings.FskPacketHandler.PreambleDetected == false )
{
SX1272.Settings.FskPacketHandler.PreambleDetected = true;
}
}
break;
case MODEM_LORA:
break;
default:
break;
}
}
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Комментарий ( 0 )