1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/lupyuen-LoRaMac-node-nuttx

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
LoRaMacCrypto.c 49 КБ
Копировать Редактировать Исходные данные Просмотреть построчно История
Miguel Luis Отправлено 5 лет назад 2f0895b
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660
/*!
* \file LoRaMacCrypto.c
*
* \brief LoRa MAC layer cryptography implementation
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* ___ _____ _ ___ _ _____ ___ ___ ___ ___
* / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
* \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
* |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
* embedded.connectivity.solutions===============
*
* \endcode
*
* \author Miguel Luis ( Semtech )
*
* \author Gregory Cristian ( Semtech )
*
* \author Daniel Jaeckle ( STACKFORCE )
*
* \author Johannes Bruder ( STACKFORCE )
*/
#include <stdbool.h>
#include <stdlib.h>
#include <stdint.h>
#include "utilities.h"
#include "secure-element.h"
#include "LoRaMacParser.h"
#include "LoRaMacSerializer.h"
#include "LoRaMacCrypto.h"
/*
* Frame direction definition for uplink communications
*/
#define UPLINK 0
/*
* Frame direction definition for downlink communications
*/
#define DOWNLINK 1
/*
* CMAC/AES Message Integrity Code (MIC) Block B0 size
*/
#define MIC_BLOCK_BX_SIZE 16
/*
* Number of security context entries
*/
#define NUM_OF_SEC_CTX 5
/*
* Size of the module context
*/
#define CRYPTO_CTX_SIZE sizeof( LoRaMacCryptoCtx_t )
/*
* Size of the module non volatile context
*/
#define CRYPTO_NVM_CTX_SIZE sizeof( LoRaMacCryptoNvmCtx_t )
/*
* Maximum size of the message that can be handled by the crypto operations
*/
#define CRYPTO_MAXMESSAGE_SIZE 256
/*
* Maximum size of the buffer for crypto operations
*/
#define CRYPTO_BUFFER_SIZE CRYPTO_MAXMESSAGE_SIZE + MIC_BLOCK_BX_SIZE
/*!
* LoRaWAN Frame counter list.
*/
typedef struct sFCntList
{
/*!
* Uplink frame counter which is incremented with each uplink.
*/
uint32_t FCntUp;
/*!
* Network downlink frame counter which is incremented with each downlink on FPort 0
* or when the FPort field is missing.
*/
uint32_t NFCntDown;
/*!
* Application downlink frame counter which is incremented with each downlink
* on a port different than 0.
*/
uint32_t AFCntDown;
/*!
* In case if the device is connected to a LoRaWAN 1.0 Server,
* this counter is used for every kind of downlink frame.
*/
uint32_t FCntDown;
/*!
* Multicast downlink counters
*/
uint32_t McFCntDown[LORAMAC_MAX_MC_CTX];
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
/*
* RJcount1 is a counter incremented with every Rejoin request Type 1 frame transmitted.
*/
uint16_t RJcount1;
#endif
}FCntList_t;
/*
* LoRaMac Crypto Non Volatile Context structure
*/
typedef struct sLoRaMacCryptoNvmCtx
{
/*
* Stores the information if the device is connected to a LoRaWAN network
* server with prior to 1.1.0 implementation.
*/
Version_t LrWanVersion;
/*
* Device nonce is a counter starting at 0 when the device is initially
* powered up and incremented with every JoinRequest.
*/
uint16_t DevNonce;
/*
* JoinNonce is a device specific counter value (that never repeats itself)
* provided by the join server and incremented with every JoinAccept message.
*/
uint32_t JoinNonce;
/*
* Frame counter list
*/
FCntList_t FCntList;
/*
* LastDownFCnt stores the information which frame counter was used to unsecure the last frame.
* This information is needed to compute ConfFCnt in B1 block for the MIC.
*/
uint32_t* LastDownFCnt;
}LoRaMacCryptoNvmCtx_t;
/*
* LoRaMac Crypto Context structure
*/
typedef struct sLoRaMacCryptoCtx
{
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
/*
* RJcount0 is a counter incremented with every Type 0 or 2 Rejoin frame transmitted.
*/
uint16_t RJcount0;
#endif
/*
* Non volatile module context structure
*/
LoRaMacCryptoNvmCtx_t* NvmCtx;
/*
* Callback function to notify the upper layer about context change
*/
LoRaMacCryptoNvmEvent EventCryptoNvmCtxChanged;
}LoRaMacCryptoCtx_t;
/*
* Key-Address item
*/
typedef struct sKeyAddr
{
/*
* Address identifier
*/
AddressIdentifier_t AddrID;
/*
* Application session key
*/
KeyIdentifier_t AppSkey;
/*
* Network session key
*/
KeyIdentifier_t NwkSkey;
/*
* Rootkey (Multicast only)
*/
KeyIdentifier_t RootKey;
}KeyAddr_t;
/*
*Crypto module context.
*/
static LoRaMacCryptoCtx_t CryptoCtx;
/*
* Non volatile module context.
*/
static LoRaMacCryptoNvmCtx_t NvmCryptoCtx;
/*
* Key-Address list
*/
static KeyAddr_t KeyAddrList[NUM_OF_SEC_CTX] =
{
{ MULTICAST_0_ADDR, MC_APP_S_KEY_0, MC_NWK_S_KEY_0, MC_KEY_0 },
{ MULTICAST_1_ADDR, MC_APP_S_KEY_1, MC_NWK_S_KEY_1, MC_KEY_1 },
{ MULTICAST_2_ADDR, MC_APP_S_KEY_2, MC_NWK_S_KEY_2, MC_KEY_2 },
{ MULTICAST_3_ADDR, MC_APP_S_KEY_3, MC_NWK_S_KEY_3, MC_KEY_3 },
{ UNICAST_DEV_ADDR, APP_S_KEY, S_NWK_S_INT_KEY, NO_KEY }
};
/*
* Local functions
*/
/*
* Encrypts the payload
*
* \param[IN] keyID - Key identifier
* \param[IN] address - Address
* \param[IN] dir - Frame direction ( Uplink or Downlink )
* \param[IN] frameCounter - Frame counter
* \param[IN] size - Size of data
* \param[IN/OUT] buffer - Data buffer
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t PayloadEncrypt( uint8_t* buffer, int16_t size, KeyIdentifier_t keyID, uint32_t address, uint8_t dir, uint32_t frameCounter )
{
if( buffer == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
uint8_t bufferIndex = 0;
uint16_t ctr = 1;
uint8_t sBlock[16] = { 0 };
uint8_t aBlock[16] = { 0 };
aBlock[0] = 0x01;
aBlock[5] = dir;
aBlock[6] = address & 0xFF;
aBlock[7] = ( address >> 8 ) & 0xFF;
aBlock[8] = ( address >> 16 ) & 0xFF;
aBlock[9] = ( address >> 24 ) & 0xFF;
aBlock[10] = frameCounter & 0xFF;
aBlock[11] = ( frameCounter >> 8 ) & 0xFF;
aBlock[12] = ( frameCounter >> 16 ) & 0xFF;
aBlock[13] = ( frameCounter >> 24 ) & 0xFF;
while( size > 0 )
{
aBlock[15] = ctr & 0xFF;
ctr++;
if( SecureElementAesEncrypt( aBlock, 16, keyID, sBlock ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
for( uint8_t i = 0; i < ( ( size > 16 ) ? 16 : size ); i++ )
{
buffer[bufferIndex + i] = buffer[bufferIndex + i] ^ sBlock[i];
}
size -= 16;
bufferIndex += 16;
}
return LORAMAC_CRYPTO_SUCCESS;
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
/*
* Encrypts the FOpts
*
* \param[IN] address - Address
* \param[IN] dir - Frame direction ( Uplink or Downlink )
* \param[IN] fCntID - Frame counter identifier
* \param[IN] frameCounter - Frame counter
* \param[IN] size - Size of data
* \param[IN/OUT] buffer - Data buffer
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t FOptsEncrypt( uint16_t size, uint32_t address, uint8_t dir, FCntIdentifier_t fCntID, uint32_t frameCounter, uint8_t* buffer )
{
if( buffer == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
uint8_t bufferIndex = 0;
uint8_t sBlock[16] = { 0 };
uint8_t aBlock[16] = { 0 };
aBlock[0] = 0x01;
if( CryptoCtx.NvmCtx->LrWanVersion.Value > 0x01010000 )
{
// Introduced in LoRaWAN 1.1.1 specification
switch( fCntID )
{
case FCNT_UP:
{
aBlock[4] = 0x01;
break;
}
case N_FCNT_DOWN:
{
aBlock[4] = 0x01;
break;
}
case A_FCNT_DOWN:
{
aBlock[4] = 0x02;
break;
}
default:
return LORAMAC_CRYPTO_FAIL_PARAM;
}
}
aBlock[5] = dir;
aBlock[6] = address & 0xFF;
aBlock[7] = ( address >> 8 ) & 0xFF;
aBlock[8] = ( address >> 16 ) & 0xFF;
aBlock[9] = ( address >> 24 ) & 0xFF;
aBlock[10] = frameCounter & 0xFF;
aBlock[11] = ( frameCounter >> 8 ) & 0xFF;
aBlock[12] = ( frameCounter >> 16 ) & 0xFF;
aBlock[13] = ( frameCounter >> 24 ) & 0xFF;
if( CryptoCtx.NvmCtx->LrWanVersion.Value > 0x01010000 )
{
// Introduced in LoRaWAN 1.1.1 specification
aBlock[15] = 0x01;
}
if( size > 0 )
{
if( SecureElementAesEncrypt( aBlock, 16, NWK_S_ENC_KEY, sBlock ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
for( uint8_t i = 0; i < size; i++ )
{
buffer[bufferIndex + i] = buffer[bufferIndex + i] ^ sBlock[i];
}
}
return LORAMAC_CRYPTO_SUCCESS;
}
#endif
/*
* Prepares B0 block for cmac computation.
*
* \param[IN] msgLen - Length of message
* \param[IN] keyID - Key identifier
* \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block )
* \param[IN] devAddr - Device address
* \param[IN] dir - Frame direction ( Uplink:0, Downlink:1 )
* \param[IN] fCnt - Frame counter
* \param[IN/OUT] b0 - B0 block
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t PrepareB0( uint16_t msgLen, KeyIdentifier_t keyID, bool isAck, uint8_t dir, uint32_t devAddr, uint32_t fCnt, uint8_t* b0 )
{
if( b0 == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
b0[0] = 0x49;
if( ( isAck == true ) && ( dir == DOWNLINK ) )
{
// confFCnt contains the frame counter value modulo 2^16 of the "confirmed" uplink or downlink frame that is being acknowledged
uint16_t confFCnt = 0;
confFCnt = ( uint16_t )( CryptoCtx.NvmCtx->FCntList.FCntUp % 65536 );
b0[1] = confFCnt & 0xFF;
b0[2] = ( confFCnt >> 8 ) & 0xFF;
}
else
{
b0[1] = 0x00;
b0[2] = 0x00;
}
b0[3] = 0x00;
b0[4] = 0x00;
b0[5] = dir;
b0[6] = devAddr & 0xFF;
b0[7] = ( devAddr >> 8 ) & 0xFF;
b0[8] = ( devAddr >> 16 ) & 0xFF;
b0[9] = ( devAddr >> 24 ) & 0xFF;
b0[10] = fCnt & 0xFF;
b0[11] = ( fCnt >> 8 ) & 0xFF;
b0[12] = ( fCnt >> 16 ) & 0xFF;
b0[13] = ( fCnt >> 24 ) & 0xFF;
b0[14] = 0x00;
b0[15] = msgLen & 0xFF;
return LORAMAC_CRYPTO_SUCCESS;
}
/*
* Computes cmac with adding B0 block in front.
*
* cmac = aes128_cmac(keyID, B0 | msg)
*
* \param[IN] msg - Message to compute the integrity code
* \param[IN] len - Length of message
* \param[IN] keyID - Key identifier
* \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block )
* \param[IN] devAddr - Device address
* \param[IN] dir - Frame direction ( Uplink:0, Downlink:1 )
* \param[IN] fCnt - Frame counter
* \param[OUT] cmac - Computed cmac
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t ComputeCmacB0( uint8_t* msg, uint16_t len, KeyIdentifier_t keyID, bool isAck, uint8_t dir, uint32_t devAddr, uint32_t fCnt, uint32_t* cmac )
{
if( ( msg == 0 ) || ( cmac == 0 ) )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
if( len > CRYPTO_MAXMESSAGE_SIZE )
{
return LORAMAC_CRYPTO_ERROR_BUF_SIZE;
}
uint8_t micBuff[MIC_BLOCK_BX_SIZE];
// Initialize the first Block
PrepareB0( len, keyID, isAck, dir, devAddr, fCnt, micBuff );
if( SecureElementComputeAesCmac( micBuff, msg, len, keyID, cmac ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
return LORAMAC_CRYPTO_SUCCESS;
}
/*!
* Verifies cmac with adding B0 block in front.
*
* \param[IN] msg - Message to compute the integrity code
* \param[IN] len - Length of message
* \param[IN] keyID - Key identifier
* \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block )
* \param[IN] devAddr - Device address
* \param[IN] dir - Frame direction ( Uplink:0, Downlink:1 )
* \param[IN] fCnt - Frame counter
* \param[in] expectedCmac - Expected cmac
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t VerifyCmacB0( uint8_t* msg, uint16_t len, KeyIdentifier_t keyID, bool isAck, uint8_t dir, uint32_t devAddr, uint32_t fCnt, uint32_t expectedCmac )
{
if( msg == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
if( len > CRYPTO_MAXMESSAGE_SIZE )
{
return LORAMAC_CRYPTO_ERROR_BUF_SIZE;
}
uint8_t micBuff[CRYPTO_BUFFER_SIZE];
memset1( micBuff, 0, CRYPTO_BUFFER_SIZE );
// Initialize the first Block
PrepareB0( len, keyID, isAck, dir, devAddr, fCnt, micBuff );
// Copy the given data to the mic computation buffer
memcpy1( ( micBuff + MIC_BLOCK_BX_SIZE ), msg, len );
SecureElementStatus_t retval = SECURE_ELEMENT_ERROR;
retval = SecureElementVerifyAesCmac( micBuff, ( len + MIC_BLOCK_BX_SIZE ), expectedCmac, keyID );
if( retval == SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_SUCCESS;
}
else if( retval == SECURE_ELEMENT_FAIL_CMAC )
{
return LORAMAC_CRYPTO_FAIL_MIC;
}
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
/*
* Prpares B1 block for cmac computation.
*
* \param[IN] msgLen - Length of message
* \param[IN] keyID - Key identifier
* \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block )
* \param[IN] txDr - Data rate used for the transmission
* \param[IN] txCh - Index of the channel used for the transmission
* \param[IN] devAddr - Device address
* \param[IN] fCntUp - Frame counter
* \param[IN/OUT] b0 - B0 block
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t PrepareB1( uint16_t msgLen, KeyIdentifier_t keyID, bool isAck, uint8_t txDr, uint8_t txCh, uint32_t devAddr, uint32_t fCntUp, uint8_t* b1 )
{
if( b1 == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
b1[0] = 0x49;
if( isAck == true )
{
// confFCnt contains the frame counter value modulo 2^16 of the "confirmed" uplink frame that is being acknowledged
uint16_t confFCnt = ( uint16_t )( *CryptoCtx.NvmCtx->LastDownFCnt % 65536 );
b1[1] = confFCnt & 0xFF;
b1[2] = ( confFCnt >> 8 ) & 0xFF;
}
else
{
b1[1] = 0x00;
b1[2] = 0x00;
}
b1[3] = txDr;
b1[4] = txCh;
b1[5] = UPLINK; // dir = Uplink
b1[6] = devAddr & 0xFF;
b1[7] = ( devAddr >> 8 ) & 0xFF;
b1[8] = ( devAddr >> 16 ) & 0xFF;
b1[9] = ( devAddr >> 24 ) & 0xFF;
b1[10] = fCntUp & 0xFF;
b1[11] = ( fCntUp >> 8 ) & 0xFF;
b1[12] = ( fCntUp >> 16 ) & 0xFF;
b1[13] = ( fCntUp >> 24 ) & 0xFF;
b1[14] = 0x00;
b1[15] = msgLen & 0xFF;
return LORAMAC_CRYPTO_SUCCESS;
}
/*
* Computes cmac with adding B1 block in front ( only for Uplink frames LoRaWAN 1.1 )
*
* cmac = aes128_cmac(keyID, B1 | msg)
*
* \param[IN] msg - Message to calculate the Integrity code
* \param[IN] len - Length of message
* \param[IN] keyID - Key identifier
* \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block )
* \param[IN] txDr - Data rate used for the transmission
* \param[IN] txCh - Index of the channel used for the transmission
* \param[IN] devAddr - Device address
* \param[IN] fCntUp - Uplink Frame counter
* \param[OUT] cmac - Computed cmac
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t ComputeCmacB1( uint8_t* msg, uint16_t len, KeyIdentifier_t keyID, bool isAck, uint8_t txDr, uint8_t txCh, uint32_t devAddr, uint32_t fCntUp, uint32_t* cmac )
{
if( ( msg == 0 ) || ( cmac == 0 ) )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
if( len > CRYPTO_MAXMESSAGE_SIZE )
{
return LORAMAC_CRYPTO_ERROR_BUF_SIZE;
}
uint8_t micBuff[MIC_BLOCK_BX_SIZE];
// Initialize the first Block
PrepareB1( len, keyID, isAck, txDr, txCh, devAddr, fCntUp, micBuff );
if( SecureElementComputeAesCmac( micBuff, msg, len, keyID, cmac ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
return LORAMAC_CRYPTO_SUCCESS;
}
#endif
/*
* Gets security item from list.
*
* \param[IN] addrID - Address identifier
* \param[OUT] keyItem - Key item reference
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t GetKeyAddrItem( AddressIdentifier_t addrID, KeyAddr_t** item )
{
for( uint8_t i = 0; i < NUM_OF_SEC_CTX; i++ )
{
if( KeyAddrList[i].AddrID == addrID )
{
*item = &( KeyAddrList[i] );
return LORAMAC_CRYPTO_SUCCESS;
}
}
return LORAMAC_CRYPTO_ERROR_INVALID_ADDR_ID;
}
/*
* Derives a session key as of LoRaWAN versions prior to 1.1.0
*
* \param[IN] keyID - Key Identifier for the key to be calculated
* \param[IN] joinNonce - Sever nonce
* \param[IN] netID - Network Identifier
* \param[IN] deviceNonce - Device nonce
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t DeriveSessionKey10x( KeyIdentifier_t keyID, uint32_t joinNonce, uint32_t netID, uint16_t devNonce )
{
uint8_t compBase[16] = { 0 };
switch( keyID )
{
case F_NWK_S_INT_KEY:
case S_NWK_S_INT_KEY:
case NWK_S_ENC_KEY:
compBase[0] = 0x01;
break;
case APP_S_KEY:
compBase[0] = 0x02;
break;
default:
return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID;
}
compBase[1] = ( uint8_t )( ( joinNonce >> 0 ) & 0xFF );
compBase[2] = ( uint8_t )( ( joinNonce >> 8 ) & 0xFF );
compBase[3] = ( uint8_t )( ( joinNonce >> 16 ) & 0xFF );
compBase[4] = ( uint8_t )( ( netID >> 0 ) & 0xFF );
compBase[5] = ( uint8_t )( ( netID >> 8 ) & 0xFF );
compBase[6] = ( uint8_t )( ( netID >> 16 ) & 0xFF );
compBase[7] = ( uint8_t )( ( devNonce >> 0 ) & 0xFF );
compBase[8] = ( uint8_t )( ( devNonce >> 8 ) & 0xFF );
if( SecureElementDeriveAndStoreKey( compBase, NWK_KEY, keyID ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
return LORAMAC_CRYPTO_SUCCESS;
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
/*
* Derives a session key as of LoRaWAN 1.1.0
*
* \param[IN] keyID - Key Identifier for the key to be calculated
* \param[IN] joinNonce - Sever nonce
* \param[IN] joinEUI - Join Server EUI
* \param[IN] deviceNonce - Device nonce
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t DeriveSessionKey11x( KeyIdentifier_t keyID, uint32_t joinNonce, uint8_t* joinEUI, uint16_t devNonce )
{
if( joinEUI == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
uint8_t compBase[16] = { 0 };
KeyIdentifier_t rootKeyId = NWK_KEY;
switch( keyID )
{
case F_NWK_S_INT_KEY:
compBase[0] = 0x01;
break;
case S_NWK_S_INT_KEY:
compBase[0] = 0x03;
break;
case NWK_S_ENC_KEY:
compBase[0] = 0x04;
break;
case APP_S_KEY:
rootKeyId = APP_KEY;
compBase[0] = 0x02;
break;
default:
return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID;
}
compBase[1] = ( uint8_t )( ( joinNonce >> 0 ) & 0xFF );
compBase[2] = ( uint8_t )( ( joinNonce >> 8 ) & 0xFF );
compBase[3] = ( uint8_t )( ( joinNonce >> 16 ) & 0xFF );
memcpyr( compBase + 4, joinEUI, 8 );
compBase[12] = ( uint8_t )( ( devNonce >> 0 ) & 0xFF );
compBase[13] = ( uint8_t )( ( devNonce >> 8 ) & 0xFF );
if( SecureElementDeriveAndStoreKey( compBase, rootKeyId, keyID ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
return LORAMAC_CRYPTO_SUCCESS;
}
/*
* Derives a life time session key (JSIntKey or JSEncKey) as of LoRaWAN 1.1.0
*
* \param[IN] keyID - Key Identifier for the key to be calculated
* \param[IN] devEUI - Device EUI
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t DeriveLifeTimeSessionKey( KeyIdentifier_t keyID, uint8_t* devEUI )
{
if( devEUI == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
uint8_t compBase[16] = { 0 };
switch( keyID )
{
case J_S_INT_KEY:
compBase[0] = 0x06;
break;
case J_S_ENC_KEY:
compBase[0] = 0x05;
break;
default:
return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID;
}
memcpyr( compBase + 1, devEUI, 8 );
if( SecureElementDeriveAndStoreKey( compBase, NWK_KEY, keyID ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
return LORAMAC_CRYPTO_SUCCESS;
}
#endif
/*
* Gets the last received frame counter
*
* \param[IN] fCntID - Frame counter identifier
* \param[IN] lastDown - Last downlink counter value
*
* \retval - Status of the operation
*/
static LoRaMacCryptoStatus_t GetLastFcntDown( FCntIdentifier_t fCntID, uint32_t* lastDown )
{
if( lastDown == NULL )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
switch( fCntID )
{
case N_FCNT_DOWN:
*lastDown = CryptoCtx.NvmCtx->FCntList.NFCntDown;
CryptoCtx.NvmCtx->LastDownFCnt = &CryptoCtx.NvmCtx->FCntList.NFCntDown;
break;
case A_FCNT_DOWN:
*lastDown = CryptoCtx.NvmCtx->FCntList.AFCntDown;
CryptoCtx.NvmCtx->LastDownFCnt = &CryptoCtx.NvmCtx->FCntList.AFCntDown;
break;
case FCNT_DOWN:
*lastDown = CryptoCtx.NvmCtx->FCntList.FCntDown;
CryptoCtx.NvmCtx->LastDownFCnt = &CryptoCtx.NvmCtx->FCntList.FCntDown;
break;
#if ( LORAMAC_MAX_MC_CTX > 0 )
case MC_FCNT_DOWN_0:
*lastDown = CryptoCtx.NvmCtx->FCntList.McFCntDown[0];
break;
#endif
#if ( LORAMAC_MAX_MC_CTX > 1 )
case MC_FCNT_DOWN_1:
*lastDown = CryptoCtx.NvmCtx->FCntList.McFCntDown[1];
break;
#endif
#if ( LORAMAC_MAX_MC_CTX > 2 )
case MC_FCNT_DOWN_2:
*lastDown = CryptoCtx.NvmCtx->FCntList.McFCntDown[2];
break;
#endif
#if ( LORAMAC_MAX_MC_CTX > 3 )
case MC_FCNT_DOWN_3:
*lastDown = CryptoCtx.NvmCtx->FCntList.McFCntDown[3];
break;
#endif
default:
return LORAMAC_CRYPTO_FAIL_FCNT_ID;
}
return LORAMAC_CRYPTO_SUCCESS;
}
/*
* Checks the downlink counter value
*
* \param[IN] fCntID - Frame counter identifier
* \param[IN] currentDown - Current downlink counter value
*
* \retval - Status of the operation
*/
static bool CheckFCntDown( FCntIdentifier_t fCntID, uint32_t currentDown )
{
uint32_t lastDown = 0;
if( GetLastFcntDown( fCntID, &lastDown ) != LORAMAC_CRYPTO_SUCCESS )
{
return false;
}
if( ( currentDown > lastDown ) ||
// For LoRaWAN 1.0.X only. Allow downlink frames of 0
( lastDown == FCNT_DOWN_INITAL_VALUE ) )
{
return true;
}
else
{
return false;
}
}
/*!
* Updates the reference downlink counter
*
* \param[IN] fCntID - Frame counter identifier
* \param[IN] currentDown - Current downlink counter value
*
* \retval - Status of the operation
*/
static void UpdateFCntDown( FCntIdentifier_t fCntID, uint32_t currentDown )
{
switch( fCntID )
{
case N_FCNT_DOWN:
CryptoCtx.NvmCtx->FCntList.NFCntDown = currentDown;
break;
case A_FCNT_DOWN:
CryptoCtx.NvmCtx->FCntList.AFCntDown = currentDown;
break;
case FCNT_DOWN:
CryptoCtx.NvmCtx->FCntList.FCntDown = currentDown;
break;
#if ( LORAMAC_MAX_MC_CTX > 0 )
case MC_FCNT_DOWN_0:
CryptoCtx.NvmCtx->FCntList.McFCntDown[0] = currentDown;
break;
#endif
#if ( LORAMAC_MAX_MC_CTX > 1 )
case MC_FCNT_DOWN_1:
CryptoCtx.NvmCtx->FCntList.McFCntDown[1] = currentDown;
break;
#endif
#if ( LORAMAC_MAX_MC_CTX > 2 )
case MC_FCNT_DOWN_2:
CryptoCtx.NvmCtx->FCntList.McFCntDown[2] = currentDown;
break;
#endif
#if ( LORAMAC_MAX_MC_CTX > 3 )
case MC_FCNT_DOWN_3:
CryptoCtx.NvmCtx->FCntList.McFCntDown[3] = currentDown;
break;
#endif
default:
break;
}
CryptoCtx.EventCryptoNvmCtxChanged( );
}
/*!
* Resets the frame counters
*/
static void ResetFCnts( void )
{
CryptoCtx.NvmCtx->FCntList.FCntUp = 0;
CryptoCtx.NvmCtx->FCntList.NFCntDown = FCNT_DOWN_INITAL_VALUE;
CryptoCtx.NvmCtx->FCntList.AFCntDown = FCNT_DOWN_INITAL_VALUE;
CryptoCtx.NvmCtx->FCntList.FCntDown = FCNT_DOWN_INITAL_VALUE;
CryptoCtx.NvmCtx->LastDownFCnt = &CryptoCtx.NvmCtx->FCntList.FCntDown;
for( int32_t i = 0; i < LORAMAC_MAX_MC_CTX; i++ )
{
CryptoCtx.NvmCtx->FCntList.McFCntDown[i] = FCNT_DOWN_INITAL_VALUE;
}
CryptoCtx.EventCryptoNvmCtxChanged( );
}
/*
* Dummy callback in case if the user provides NULL function pointer
*/
static void DummyCB( void )
{
return;
}
/*
* API functions
*/
LoRaMacCryptoStatus_t LoRaMacCryptoInit( LoRaMacCryptoNvmEvent cryptoNvmCtxChanged )
{
// Assign non volatile context
CryptoCtx.NvmCtx = &NvmCryptoCtx;
// Assign callback
if( cryptoNvmCtxChanged != 0 )
{
CryptoCtx.EventCryptoNvmCtxChanged = cryptoNvmCtxChanged;
}
else
{
CryptoCtx.EventCryptoNvmCtxChanged = DummyCB;
}
// Initialize with default
memset1( ( uint8_t* )CryptoCtx.NvmCtx, 0, sizeof( LoRaMacCryptoNvmCtx_t ) );
// Set default LoRaWAN version
CryptoCtx.NvmCtx->LrWanVersion.Fields.Major = 1;
CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor = 1;
CryptoCtx.NvmCtx->LrWanVersion.Fields.Patch = 1;
CryptoCtx.NvmCtx->LrWanVersion.Fields.Revision = 0;
// Reset frame counters
ResetFCnts( );
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoSetLrWanVersion( Version_t version )
{
CryptoCtx.NvmCtx->LrWanVersion = version;
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoRestoreNvmCtx( void* cryptoNvmCtx )
{
// Restore module context
if( cryptoNvmCtx != 0 )
{
memcpy1( ( uint8_t* )&NvmCryptoCtx, ( uint8_t* )cryptoNvmCtx, CRYPTO_NVM_CTX_SIZE );
return LORAMAC_CRYPTO_SUCCESS;
}
else
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
}
void* LoRaMacCryptoGetNvmCtx( size_t* cryptoNvmCtxSize )
{
*cryptoNvmCtxSize = CRYPTO_NVM_CTX_SIZE;
return &NvmCryptoCtx;
}
LoRaMacCryptoStatus_t LoRaMacCryptoGetFCntUp( uint32_t* currentUp )
{
if( currentUp == NULL )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
*currentUp = CryptoCtx.NvmCtx->FCntList.FCntUp + 1;
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoGetFCntDown( FCntIdentifier_t fCntID, uint32_t frameFcnt, uint32_t* currentDown )
{
uint32_t lastDown = 0;
int32_t fCntDiff = 0;
LoRaMacCryptoStatus_t cryptoStatus = LORAMAC_CRYPTO_ERROR;
if( currentDown == NULL )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
cryptoStatus = GetLastFcntDown( fCntID, &lastDown );
if( cryptoStatus != LORAMAC_CRYPTO_SUCCESS )
{
return cryptoStatus;
}
// For LoRaWAN 1.0.X only, allow downlink frames of 0
if( lastDown == FCNT_DOWN_INITAL_VALUE )
{
*currentDown = frameFcnt;
}
else
{
// Add difference, consider roll-over
fCntDiff = ( int32_t )( ( int64_t )frameFcnt - ( int64_t )( lastDown & 0x0000FFFF ) );
if( fCntDiff > 0 )
{ // Positive difference
*currentDown = lastDown + fCntDiff;
}
else if( fCntDiff == 0 )
{ // Duplicate FCnt value, keep the current value.
*currentDown = lastDown;
return LORAMAC_CRYPTO_FAIL_FCNT_DUPLICATED;
}
else
{ // Negative difference, assume a roll-over of one uint16_t
*currentDown = ( lastDown & 0xFFFF0000 ) + 0x10000 + frameFcnt;
}
}
return LORAMAC_CRYPTO_SUCCESS;
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
LoRaMacCryptoStatus_t LoRaMacCryptoGetRJcount( FCntIdentifier_t fCntID, uint16_t* rJcount )
{
if( rJcount == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
switch( fCntID )
{
case RJ_COUNT_0:
*rJcount = CryptoCtx.RJcount0 + 1;
break;
case RJ_COUNT_1:
*rJcount = CryptoCtx.NvmCtx->FCntList.RJcount1 + 1;
break;
default:
return LORAMAC_CRYPTO_FAIL_FCNT_ID;
}
return LORAMAC_CRYPTO_SUCCESS;
}
#endif
LoRaMacCryptoStatus_t LoRaMacCryptoSetMulticastReference( MulticastCtx_t* multicastList )
{
if( multicastList == NULL )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
for( int32_t i = 0; i < LORAMAC_MAX_MC_CTX; i++ )
{
multicastList[i].DownLinkCounter = &CryptoCtx.NvmCtx->FCntList.McFCntDown[i];
}
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoSetKey( KeyIdentifier_t keyID, uint8_t* key )
{
if( SecureElementSetKey( keyID, key ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
if( keyID == APP_KEY )
{
// Derive lifetime keys
if( LoRaMacCryptoDeriveMcRootKey( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor, keyID ) != LORAMAC_CRYPTO_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
if( LoRaMacCryptoDeriveMcKEKey( MC_ROOT_KEY ) != LORAMAC_CRYPTO_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
}
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoPrepareJoinRequest( LoRaMacMessageJoinRequest_t* macMsg )
{
if( macMsg == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
KeyIdentifier_t micComputationKeyID = NWK_KEY;
// Add device nonce
#if ( USE_RANDOM_DEV_NONCE == 1 )
uint32_t devNonce = 0;
SecureElementRandomNumber( &devNonce );
CryptoCtx.NvmCtx->DevNonce = devNonce;
#else
CryptoCtx.NvmCtx->DevNonce++;
#endif
CryptoCtx.EventCryptoNvmCtxChanged( );
macMsg->DevNonce = CryptoCtx.NvmCtx->DevNonce;
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
// Derive lifetime session keys
if( DeriveLifeTimeSessionKey( J_S_INT_KEY, macMsg->DevEUI ) != LORAMAC_CRYPTO_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR;
}
if( DeriveLifeTimeSessionKey( J_S_ENC_KEY, macMsg->DevEUI ) != LORAMAC_CRYPTO_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR;
}
#endif
// Serialize message
if( LoRaMacSerializerJoinRequest( macMsg ) != LORAMAC_SERIALIZER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SERIALIZER;
}
// Compute mic
if( SecureElementComputeAesCmac( NULL, macMsg->Buffer, ( LORAMAC_JOIN_REQ_MSG_SIZE - LORAMAC_MIC_FIELD_SIZE ), micComputationKeyID, &macMsg->MIC ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
// Reserialize message to add the MIC
if( LoRaMacSerializerJoinRequest( macMsg ) != LORAMAC_SERIALIZER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SERIALIZER;
}
return LORAMAC_CRYPTO_SUCCESS;
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
LoRaMacCryptoStatus_t LoRaMacCryptoPrepareReJoinType1( LoRaMacMessageReJoinType1_t* macMsg )
{
if( macMsg == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
// Check for RJcount1 overflow
if( CryptoCtx.NvmCtx->FCntList.RJcount1 == 65535 )
{
return LORAMAC_CRYPTO_ERROR_RJCOUNT1_OVERFLOW;
}
// Serialize message
if( LoRaMacSerializerReJoinType1( macMsg ) != LORAMAC_SERIALIZER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SERIALIZER;
}
// Compute mic
// cmac = aes128_cmac(JSIntKey, MHDR | RejoinType | JoinEUI| DevEUI | RJcount1)
if( SecureElementComputeAesCmac( NULL, macMsg->Buffer, ( LORAMAC_RE_JOIN_1_MSG_SIZE - LORAMAC_MIC_FIELD_SIZE ), J_S_INT_KEY, &macMsg->MIC ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
// Reserialize message to add the MIC
if( LoRaMacSerializerReJoinType1( macMsg ) != LORAMAC_SERIALIZER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SERIALIZER;
}
// Increment RJcount1
CryptoCtx.NvmCtx->FCntList.RJcount1++;
CryptoCtx.EventCryptoNvmCtxChanged( );
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoPrepareReJoinType0or2( LoRaMacMessageReJoinType0or2_t* macMsg )
{
if( macMsg == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
// Check for RJcount0 overflow
if( CryptoCtx.RJcount0 == 65535 )
{
return LORAMAC_CRYPTO_FAIL_RJCOUNT0_OVERFLOW;
}
// Serialize message
if( LoRaMacSerializerReJoinType0or2( macMsg ) != LORAMAC_SERIALIZER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SERIALIZER;
}
// Compute mic
// cmac = aes128_cmac(SNwkSIntKey, MHDR | Rejoin Type | NetID | DevEUI | RJcount0)
if( SecureElementComputeAesCmac( NULL, macMsg->Buffer, ( LORAMAC_RE_JOIN_0_2_MSG_SIZE - LORAMAC_MIC_FIELD_SIZE ), S_NWK_S_INT_KEY, &macMsg->MIC ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
// Re-serialize message to add the MIC
if( LoRaMacSerializerReJoinType0or2( macMsg ) != LORAMAC_SERIALIZER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SERIALIZER;
}
// Increment RJcount0
CryptoCtx.RJcount0++;
return LORAMAC_CRYPTO_SUCCESS;
}
#endif
LoRaMacCryptoStatus_t LoRaMacCryptoHandleJoinAccept( JoinReqIdentifier_t joinReqType, uint8_t* joinEUI, LoRaMacMessageJoinAccept_t* macMsg )
{
if( ( macMsg == 0 ) || ( joinEUI == 0 ) )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
LoRaMacCryptoStatus_t retval = LORAMAC_CRYPTO_ERROR;
uint8_t decJoinAccept[LORAMAC_JOIN_ACCEPT_FRAME_MAX_SIZE] = { 0 };
uint8_t versionMinor = 0;
uint16_t nonce = CryptoCtx.NvmCtx->DevNonce;
// Nonce selection depending on JoinReqType
// JOIN_REQ : CryptoCtx.NvmCtx->DevNonce
// REJOIN_REQ_0 : CryptoCtx.RJcount0
// REJOIN_REQ_1 : CryptoCtx.RJcount1
// REJOIN_REQ_2 : CryptoCtx.RJcount0
if( joinReqType == JOIN_REQ )
{
// Nothing to be done
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
else
{
// If Join-accept is a reply to a rejoin, the RJcount(0 or 1) replaces DevNonce in the key derivation process.
if( ( joinReqType == REJOIN_REQ_0 ) || ( joinReqType == REJOIN_REQ_2 ) )
{
nonce = CryptoCtx.RJcount0;
}
else
{
nonce = CryptoCtx.NvmCtx->FCntList.RJcount1;
}
}
#endif
if( SecureElementProcessJoinAccept( joinReqType, joinEUI, nonce, macMsg->Buffer,
macMsg->BufSize, decJoinAccept,
&versionMinor ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
memcpy1( macMsg->Buffer, decJoinAccept, macMsg->BufSize );
// Parse the message
if( LoRaMacParserJoinAccept( macMsg ) != LORAMAC_PARSER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_PARSER;
}
uint32_t currentJoinNonce;
currentJoinNonce = ( uint32_t )macMsg->JoinNonce[0];
currentJoinNonce |= ( ( uint32_t )macMsg->JoinNonce[1] << 8 );
currentJoinNonce |= ( ( uint32_t )macMsg->JoinNonce[2] << 16 );
#if( USE_JOIN_NONCE_COUNTER_CHECK == 1 )
// Check if the JoinNonce is greater as the previous one
if( currentJoinNonce > CryptoCtx.NvmCtx->JoinNonce )
#else
// Check if the JoinNonce is different from the previous one
if( currentJoinNonce != CryptoCtx.NvmCtx->JoinNonce )
#endif
{
CryptoCtx.NvmCtx->JoinNonce = currentJoinNonce;
CryptoCtx.EventCryptoNvmCtxChanged( );
}
else
{
return LORAMAC_CRYPTO_FAIL_JOIN_NONCE;
}
// Derive lifetime keys
retval = LoRaMacCryptoDeriveMcRootKey( versionMinor, APP_KEY );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
retval = LoRaMacCryptoDeriveMcKEKey( MC_ROOT_KEY );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
if( versionMinor == 1 )
{
// Operating in LoRaWAN 1.1.x mode
retval = DeriveSessionKey11x( F_NWK_S_INT_KEY, currentJoinNonce, joinEUI, nonce );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
retval = DeriveSessionKey11x( S_NWK_S_INT_KEY, currentJoinNonce, joinEUI, nonce );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
retval = DeriveSessionKey11x( NWK_S_ENC_KEY, currentJoinNonce, joinEUI, nonce );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
retval = DeriveSessionKey11x( APP_S_KEY, currentJoinNonce, joinEUI, nonce );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
}
else
#endif
{
// Operating in LoRaWAN 1.0.x mode
uint32_t netID;
netID = ( uint32_t )macMsg->NetID[0];
netID |= ( ( uint32_t )macMsg->NetID[1] << 8 );
netID |= ( ( uint32_t )macMsg->NetID[2] << 16 );
retval = DeriveSessionKey10x( APP_S_KEY, currentJoinNonce, netID, nonce );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
retval = DeriveSessionKey10x( NWK_S_ENC_KEY, currentJoinNonce, netID, nonce );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
retval = DeriveSessionKey10x( F_NWK_S_INT_KEY, currentJoinNonce, netID, nonce );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
retval = DeriveSessionKey10x( S_NWK_S_INT_KEY, currentJoinNonce, netID, nonce );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
}
// Join-Accept is successfully processed
// Save LoRaWAN specification version
CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor = versionMinor;
// Reset frame counters
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
CryptoCtx.RJcount0 = 0;
#endif
CryptoCtx.NvmCtx->FCntList.FCntUp = 0;
CryptoCtx.NvmCtx->FCntList.FCntDown = FCNT_DOWN_INITAL_VALUE;
CryptoCtx.NvmCtx->FCntList.NFCntDown = FCNT_DOWN_INITAL_VALUE;
CryptoCtx.NvmCtx->FCntList.AFCntDown = FCNT_DOWN_INITAL_VALUE;
CryptoCtx.EventCryptoNvmCtxChanged( );
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoSecureMessage( uint32_t fCntUp, uint8_t txDr, uint8_t txCh, LoRaMacMessageData_t* macMsg )
{
LoRaMacCryptoStatus_t retval = LORAMAC_CRYPTO_ERROR;
KeyIdentifier_t payloadDecryptionKeyID = APP_S_KEY;
if( macMsg == NULL )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
if( fCntUp < CryptoCtx.NvmCtx->FCntList.FCntUp )
{
return LORAMAC_CRYPTO_FAIL_FCNT_SMALLER;
}
// Encrypt payload
if( macMsg->FPort == 0 )
{
// Use network session key
payloadDecryptionKeyID = NWK_S_ENC_KEY;
}
if( fCntUp > CryptoCtx.NvmCtx->FCntList.FCntUp )
{
retval = PayloadEncrypt( macMsg->FRMPayload, macMsg->FRMPayloadSize, payloadDecryptionKeyID, macMsg->FHDR.DevAddr, UPLINK, fCntUp );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 1 )
{
// Encrypt FOpts
retval = FOptsEncrypt( macMsg->FHDR.FCtrl.Bits.FOptsLen, macMsg->FHDR.DevAddr, UPLINK, FCNT_UP, fCntUp, macMsg->FHDR.FOpts );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
}
#endif
}
// Serialize message
if( LoRaMacSerializerData( macMsg ) != LORAMAC_SERIALIZER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SERIALIZER;
}
// Compute mic
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 1 )
{
uint32_t cmacS = 0;
uint32_t cmacF = 0;
// cmacS = aes128_cmac(SNwkSIntKey, B1 | msg)
retval = ComputeCmacB1( macMsg->Buffer, ( macMsg->BufSize - LORAMAC_MIC_FIELD_SIZE ), S_NWK_S_INT_KEY, macMsg->FHDR.FCtrl.Bits.Ack, txDr, txCh, macMsg->FHDR.DevAddr, fCntUp, &cmacS );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
//cmacF = aes128_cmac(FNwkSIntKey, B0 | msg)
retval = ComputeCmacB0( macMsg->Buffer, ( macMsg->BufSize - LORAMAC_MIC_FIELD_SIZE ), F_NWK_S_INT_KEY, macMsg->FHDR.FCtrl.Bits.Ack, UPLINK, macMsg->FHDR.DevAddr, fCntUp, &cmacF );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
// MIC = cmacS[0..1] | cmacF[0..1]
macMsg->MIC = ( ( cmacF << 16 ) & 0xFFFF0000 ) | ( cmacS & 0x0000FFFF );
}
else
#endif
{
// MIC = cmacF[0..3]
// The IsAck parameter is every time false since the ConfFCnt field is not used in legacy mode.
retval = ComputeCmacB0( macMsg->Buffer, ( macMsg->BufSize - LORAMAC_MIC_FIELD_SIZE ), NWK_S_ENC_KEY, false, UPLINK, macMsg->FHDR.DevAddr, fCntUp, &macMsg->MIC );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
}
// Re-serialize message to add the MIC
if( LoRaMacSerializerData( macMsg ) != LORAMAC_SERIALIZER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SERIALIZER;
}
CryptoCtx.NvmCtx->FCntList.FCntUp = fCntUp;
CryptoCtx.EventCryptoNvmCtxChanged( );
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoUnsecureMessage( AddressIdentifier_t addrID, uint32_t address, FCntIdentifier_t fCntID, uint32_t fCntDown, LoRaMacMessageData_t* macMsg )
{
if( macMsg == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
if( CheckFCntDown( fCntID, fCntDown ) == false )
{
return LORAMAC_CRYPTO_FAIL_FCNT_SMALLER;
}
LoRaMacCryptoStatus_t retval = LORAMAC_CRYPTO_ERROR;
KeyIdentifier_t payloadDecryptionKeyID = APP_S_KEY;
KeyIdentifier_t micComputationKeyID = S_NWK_S_INT_KEY;
KeyAddr_t* curItem;
// Parse the message
if( LoRaMacParserData( macMsg ) != LORAMAC_PARSER_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_PARSER;
}
// Determine current security context
retval = GetKeyAddrItem( addrID, &curItem );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
payloadDecryptionKeyID = curItem->AppSkey;
micComputationKeyID = curItem->NwkSkey;
// Check if it is our address
if( address != macMsg->FHDR.DevAddr )
{
return LORAMAC_CRYPTO_FAIL_ADDRESS;
}
// Compute mic
bool isAck = macMsg->FHDR.FCtrl.Bits.Ack;
if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 0 )
{
// In legacy mode the IsAck parameter is forced to be false since the ConfFCnt field is not used.
isAck = false;
}
// Verify mic
retval = VerifyCmacB0( macMsg->Buffer, ( macMsg->BufSize - LORAMAC_MIC_FIELD_SIZE ), micComputationKeyID, isAck, DOWNLINK, address, fCntDown, macMsg->MIC );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
// Decrypt payload
if( macMsg->FPort == 0 )
{
// Use network session encryption key
payloadDecryptionKeyID = NWK_S_ENC_KEY;
}
retval = PayloadEncrypt( macMsg->FRMPayload, macMsg->FRMPayloadSize, payloadDecryptionKeyID, address, DOWNLINK, fCntDown );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
#if( USE_LRWAN_1_1_X_CRYPTO == 1 )
if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 1 )
{
if( addrID == UNICAST_DEV_ADDR )
{
// Decrypt FOpts
retval = FOptsEncrypt( macMsg->FHDR.FCtrl.Bits.FOptsLen, address, DOWNLINK, fCntID, fCntDown, macMsg->FHDR.FOpts );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
}
}
#endif
UpdateFCntDown( fCntID, fCntDown );
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoDeriveMcRootKey( uint8_t versionMinor, KeyIdentifier_t keyID )
{
// Prevent other keys than AppKey
if( keyID != APP_KEY )
{
return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID;
}
uint8_t compBase[16] = { 0 };
if( versionMinor == 1 )
{
compBase[0] = 0x20;
}
if( SecureElementDeriveAndStoreKey( compBase, keyID, MC_ROOT_KEY ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoDeriveMcKEKey( KeyIdentifier_t keyID )
{
// Prevent other keys than McRootKey
if( keyID != MC_ROOT_KEY )
{
return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID;
}
uint8_t compBase[16] = { 0 };
if( SecureElementDeriveAndStoreKey( compBase, keyID, MC_KE_KEY ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
return LORAMAC_CRYPTO_SUCCESS;
}
LoRaMacCryptoStatus_t LoRaMacCryptoDeriveMcSessionKeyPair( AddressIdentifier_t addrID, uint32_t mcAddr )
{
if( mcAddr == 0 )
{
return LORAMAC_CRYPTO_ERROR_NPE;
}
LoRaMacCryptoStatus_t retval = LORAMAC_CRYPTO_ERROR;
// Determine current security context
KeyAddr_t* curItem;
retval = GetKeyAddrItem( addrID, &curItem );
if( retval != LORAMAC_CRYPTO_SUCCESS )
{
return retval;
}
// McAppSKey = aes128_encrypt(McKey, 0x01 | McAddr | pad16)
// McNwkSKey = aes128_encrypt(McKey, 0x02 | McAddr | pad16)
uint8_t compBaseAppS[16] = { 0 };
uint8_t compBaseNwkS[16] = { 0 };
compBaseAppS[0] = 0x01;
compBaseAppS[1] = mcAddr & 0xFF;
compBaseAppS[2] = ( mcAddr >> 8 ) & 0xFF;
compBaseAppS[3] = ( mcAddr >> 16 ) & 0xFF;
compBaseAppS[4] = ( mcAddr >> 24 ) & 0xFF;
compBaseNwkS[0] = 0x02;
compBaseNwkS[1] = mcAddr & 0xFF;
compBaseNwkS[2] = ( mcAddr >> 8 ) & 0xFF;
compBaseNwkS[3] = ( mcAddr >> 16 ) & 0xFF;
compBaseNwkS[4] = ( mcAddr >> 24 ) & 0xFF;
if( SecureElementDeriveAndStoreKey( compBaseAppS, curItem->RootKey, curItem->AppSkey ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
if( SecureElementDeriveAndStoreKey( compBaseNwkS, curItem->RootKey, curItem->NwkSkey ) != SECURE_ELEMENT_SUCCESS )
{
return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC;
}
return LORAMAC_CRYPTO_SUCCESS;
}

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://gitlife.ru/oschina-mirror/lupyuen-LoRaMac-node-nuttx.git
git@gitlife.ru:oschina-mirror/lupyuen-LoRaMac-node-nuttx.git
oschina-mirror
lupyuen-LoRaMac-node-nuttx
lupyuen-LoRaMac-node-nuttx
v4.5.0-rc.1