import time

class PID:
    """PID Controller
    """

    def __init__(self, P=1.0, I=0.0, D=0.0):

        self.Kp = P
        self.Ki = I
        self.Kd = D

        self.SetPoint = 0.0
        self.sample_time = 0.00
        self.current_time = time.time()
        self.last_time = self.current_time

        self.clear()

    def clear(self):
        """Clears PID computations and coefficients"""
        self.SetPoint = 0.0

        self.PTerm = 0.0
        self.ITerm = 0.0
        self.DTerm = 0.0
        self.last_error = 0.0

        # Windup Guard
        self.int_error = 0.0
        self.windup_guard = 20.0

        self.output = 0.0

        self.thorro_ = 0.0
        self.brake_ = 0.0
        self.steer_ = 0.0
        self.yrsteer_ = 0.0

    def update(self, feedback_value):
        """Calculates PID value for given reference feedback
        .. math::
            u(t) = K_p e(t) + K_i \int_{0}^{t} e(t)dt + K_d {de}/{dt}
        .. figure:: images/pid_1.png
           :align:   center
           Test PID with Kp=1.2, Ki=1, Kd=0.001 (test_pid.py)
        """
        error = self.SetPoint - feedback_value

        self.current_time = time.time()
        delta_time = self.current_time - self.last_time
        delta_error = error - self.last_error

        if (delta_time >= self.sample_time):
            self.PTerm = self.Kp * error
            self.ITerm += error * delta_time

            if (self.ITerm < -self.windup_guard):
                self.ITerm = -self.windup_guard
            elif (self.ITerm > self.windup_guard):
                self.ITerm = self.windup_guard

            self.DTerm = 0.0
            if delta_time > 0:
                self.DTerm = delta_error / delta_time

            # Remember last time and last error for next calculation
            self.last_time = self.current_time
            self.last_error = error

            self.output = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm)

    def setKp(self, proportional_gain):
        """Determines how aggressively the PID reacts to the current error with setting Proportional Gain"""
        self.Kp = proportional_gain

    def setKi(self, integral_gain):
        """Determines how aggressively the PID reacts to the current error with setting Integral Gain"""
        self.Ki = integral_gain

    def setKd(self, derivative_gain):
        """Determines how aggressively the PID reacts to the current error with setting Derivative Gain"""
        self.Kd = derivative_gain

    def setSetpoint(self, target):
        """Determines how aggressively the PID reacts to the current error with setting Derivative Gain"""
        self.SetPoint = target