// Copyright 2017 PingCAP, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // See the License for the specific language governing permissions and // limitations under the License. package core import ( "math" "github.com/hanchuanchuan/goInception/expression" "github.com/hanchuanchuan/goInception/planner/property" "github.com/pingcap/errors" log "github.com/sirupsen/logrus" ) func (p *basePhysicalPlan) StatsCount() float64 { return p.stats.RowCount } func (p *LogicalTableDual) deriveStats() (*property.StatsInfo, error) { profile := &property.StatsInfo{ RowCount: float64(p.RowCount), Cardinality: make([]float64, p.Schema().Len()), } for i := range profile.Cardinality { profile.Cardinality[i] = float64(p.RowCount) } p.stats = profile return p.stats, nil } func (p *baseLogicalPlan) deriveStats() (*property.StatsInfo, error) { if len(p.children) > 1 { panic("LogicalPlans with more than one child should implement their own deriveStats().") } if len(p.children) == 1 { var err error p.stats, err = p.children[0].deriveStats() return p.stats, errors.Trace(err) } profile := &property.StatsInfo{ RowCount: float64(1), Cardinality: make([]float64, p.self.Schema().Len()), } for i := range profile.Cardinality { profile.Cardinality[i] = float64(1) } p.stats = profile return profile, nil } func (ds *DataSource) getStatsByFilter(conds expression.CNFExprs) *property.StatsInfo { profile := &property.StatsInfo{ RowCount: float64(ds.statisticTable.Count), Cardinality: make([]float64, len(ds.Columns)), HistColl: ds.statisticTable.GenerateHistCollFromColumnInfo(ds.Columns, ds.schema.Columns), UsePseudoStats: ds.statisticTable.Pseudo, } for i, col := range ds.Columns { hist, ok := ds.statisticTable.Columns[col.ID] if ok && hist.Count > 0 { factor := float64(ds.statisticTable.Count) / float64(hist.Count) profile.Cardinality[i] = float64(hist.NDV) * factor } else { profile.Cardinality[i] = profile.RowCount * distinctFactor } } ds.stats = profile selectivity, err := profile.HistColl.Selectivity(ds.ctx, conds) if err != nil { log.Warnf("An error happened: %v, we have to use the default selectivity", err.Error()) selectivity = selectionFactor } return profile.Scale(selectivity) } func (ds *DataSource) deriveStats() (*property.StatsInfo, error) { // PushDownNot here can convert query 'not (a != 1)' to 'a = 1'. for i, expr := range ds.pushedDownConds { ds.pushedDownConds[i] = expression.PushDownNot(nil, expr, false) } ds.stats = ds.getStatsByFilter(ds.pushedDownConds) for _, path := range ds.possibleAccessPaths { if path.isTablePath { noIntervalRanges, err := ds.deriveTablePathStats(path) if err != nil { return nil, errors.Trace(err) } // If we have point or empty range, just remove other possible paths. if noIntervalRanges || len(path.ranges) == 0 { ds.possibleAccessPaths[0] = path ds.possibleAccessPaths = ds.possibleAccessPaths[:1] break } continue } noIntervalRanges, err := ds.deriveIndexPathStats(path) if err != nil { return nil, errors.Trace(err) } // If we have empty range, or point range on unique index, just remove other possible paths. if (noIntervalRanges && path.index.Unique) || len(path.ranges) == 0 { ds.possibleAccessPaths[0] = path ds.possibleAccessPaths = ds.possibleAccessPaths[:1] break } } return ds.stats, nil } func (p *LogicalSelection) deriveStats() (*property.StatsInfo, error) { childProfile, err := p.children[0].deriveStats() if err != nil { return nil, errors.Trace(err) } p.stats = childProfile.Scale(selectionFactor) return p.stats, nil } func (p *LogicalUnionAll) deriveStats() (*property.StatsInfo, error) { p.stats = &property.StatsInfo{ Cardinality: make([]float64, p.Schema().Len()), } for _, child := range p.children { childProfile, err := child.deriveStats() if err != nil { return nil, errors.Trace(err) } p.stats.RowCount += childProfile.RowCount for i := range p.stats.Cardinality { p.stats.Cardinality[i] += childProfile.Cardinality[i] } } return p.stats, nil } func (p *LogicalLimit) deriveStats() (*property.StatsInfo, error) { childProfile, err := p.children[0].deriveStats() if err != nil { return nil, errors.Trace(err) } p.stats = &property.StatsInfo{ RowCount: math.Min(float64(p.Count), childProfile.RowCount), Cardinality: make([]float64, len(childProfile.Cardinality)), } for i := range p.stats.Cardinality { p.stats.Cardinality[i] = math.Min(childProfile.Cardinality[i], p.stats.RowCount) } return p.stats, nil } func (lt *LogicalTopN) deriveStats() (*property.StatsInfo, error) { childProfile, err := lt.children[0].deriveStats() if err != nil { return nil, errors.Trace(err) } lt.stats = &property.StatsInfo{ RowCount: math.Min(float64(lt.Count), childProfile.RowCount), Cardinality: make([]float64, len(childProfile.Cardinality)), } for i := range lt.stats.Cardinality { lt.stats.Cardinality[i] = math.Min(childProfile.Cardinality[i], lt.stats.RowCount) } return lt.stats, nil } // getCardinality will return the Cardinality of a couple of columns. We simply return the max one, because we cannot know // the Cardinality for multi-dimension attributes properly. This is a simple and naive scheme of Cardinality estimation. func getCardinality(cols []*expression.Column, schema *expression.Schema, profile *property.StatsInfo) float64 { indices := schema.ColumnsIndices(cols) if indices == nil { log.Errorf("Cannot find column %v indices from schema %s", cols, schema) return 0 } var cardinality = 1.0 for _, idx := range indices { // It is a very elementary estimation. cardinality = math.Max(cardinality, profile.Cardinality[idx]) } return cardinality } func (p *LogicalProjection) deriveStats() (*property.StatsInfo, error) { childProfile, err := p.children[0].deriveStats() if err != nil { return nil, errors.Trace(err) } p.stats = &property.StatsInfo{ RowCount: childProfile.RowCount, Cardinality: make([]float64, len(p.Exprs)), } for i, expr := range p.Exprs { cols := expression.ExtractColumns(expr) p.stats.Cardinality[i] = getCardinality(cols, p.children[0].Schema(), childProfile) } return p.stats, nil } func (la *LogicalAggregation) deriveStats() (*property.StatsInfo, error) { childProfile, err := la.children[0].deriveStats() if err != nil { return nil, errors.Trace(err) } gbyCols := make([]*expression.Column, 0, len(la.GroupByItems)) for _, gbyExpr := range la.GroupByItems { cols := expression.ExtractColumns(gbyExpr) gbyCols = append(gbyCols, cols...) } cardinality := getCardinality(gbyCols, la.children[0].Schema(), childProfile) la.stats = &property.StatsInfo{ RowCount: cardinality, Cardinality: make([]float64, la.schema.Len()), } // We cannot estimate the Cardinality for every output, so we use a conservative strategy. for i := range la.stats.Cardinality { la.stats.Cardinality[i] = cardinality } la.inputCount = childProfile.RowCount return la.stats, nil } // deriveStats prepares property.StatsInfo. // If the type of join is SemiJoin, the selectivity of it will be same as selection's. // If the type of join is LeftOuterSemiJoin, it will not add or remove any row. The last column is a boolean value, whose Cardinality should be two. // If the type of join is inner/outer join, the output of join(s, t) should be N(s) * N(t) / (V(s.key) * V(t.key)) * Min(s.key, t.key). // N(s) stands for the number of rows in relation s. V(s.key) means the Cardinality of join key in s. // This is a quite simple strategy: We assume every bucket of relation which will participate join has the same number of rows, and apply cross join for // every matched bucket. func (p *LogicalJoin) deriveStats() (*property.StatsInfo, error) { leftProfile, err := p.children[0].deriveStats() if err != nil { return nil, errors.Trace(err) } rightProfile, err := p.children[1].deriveStats() if err != nil { return nil, errors.Trace(err) } if p.JoinType == SemiJoin || p.JoinType == AntiSemiJoin { p.stats = &property.StatsInfo{ RowCount: leftProfile.RowCount * selectionFactor, Cardinality: make([]float64, len(leftProfile.Cardinality)), } for i := range p.stats.Cardinality { p.stats.Cardinality[i] = leftProfile.Cardinality[i] * selectionFactor } return p.stats, nil } if p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin { p.stats = &property.StatsInfo{ RowCount: leftProfile.RowCount, Cardinality: make([]float64, p.schema.Len()), } copy(p.stats.Cardinality, leftProfile.Cardinality) p.stats.Cardinality[len(p.stats.Cardinality)-1] = 2.0 return p.stats, nil } if 0 == len(p.EqualConditions) { p.stats = &property.StatsInfo{ RowCount: leftProfile.RowCount * rightProfile.RowCount, Cardinality: append(leftProfile.Cardinality, rightProfile.Cardinality...), } return p.stats, nil } leftKeys := make([]*expression.Column, 0, len(p.EqualConditions)) rightKeys := make([]*expression.Column, 0, len(p.EqualConditions)) for _, eqCond := range p.EqualConditions { leftKeys = append(leftKeys, eqCond.GetArgs()[0].(*expression.Column)) rightKeys = append(rightKeys, eqCond.GetArgs()[1].(*expression.Column)) } leftKeyCardinality := getCardinality(leftKeys, p.children[0].Schema(), leftProfile) rightKeyCardinality := getCardinality(rightKeys, p.children[1].Schema(), rightProfile) count := leftProfile.RowCount * rightProfile.RowCount / math.Max(leftKeyCardinality, rightKeyCardinality) if p.JoinType == LeftOuterJoin { count = math.Max(count, leftProfile.RowCount) } else if p.JoinType == RightOuterJoin { count = math.Max(count, rightProfile.RowCount) } cardinality := make([]float64, 0, p.schema.Len()) cardinality = append(cardinality, leftProfile.Cardinality...) cardinality = append(cardinality, rightProfile.Cardinality...) for i := range cardinality { cardinality[i] = math.Min(cardinality[i], count) } p.stats = &property.StatsInfo{ RowCount: count, Cardinality: cardinality, } return p.stats, nil } func (la *LogicalApply) deriveStats() (*property.StatsInfo, error) { leftProfile, err := la.children[0].deriveStats() if err != nil { return nil, errors.Trace(err) } _, err = la.children[1].deriveStats() if err != nil { return nil, errors.Trace(err) } la.stats = &property.StatsInfo{ RowCount: leftProfile.RowCount, Cardinality: make([]float64, la.schema.Len()), } copy(la.stats.Cardinality, leftProfile.Cardinality) if la.JoinType == LeftOuterSemiJoin || la.JoinType == AntiLeftOuterSemiJoin { la.stats.Cardinality[len(la.stats.Cardinality)-1] = 2.0 } else { for i := la.children[0].Schema().Len(); i < la.schema.Len(); i++ { la.stats.Cardinality[i] = leftProfile.RowCount } } return la.stats, nil } // Exists and MaxOneRow produce at most one row, so we set the RowCount of stats one. func getSingletonStats(len int) *property.StatsInfo { ret := &property.StatsInfo{ RowCount: 1.0, Cardinality: make([]float64, len), } for i := 0; i < len; i++ { ret.Cardinality[i] = 1 } return ret } func (p *LogicalMaxOneRow) deriveStats() (*property.StatsInfo, error) { _, err := p.children[0].deriveStats() if err != nil { return nil, errors.Trace(err) } p.stats = getSingletonStats(p.Schema().Len()) return p.stats, nil }