// Copyright 2016 PingCAP, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // See the License for the specific language governing permissions and // limitations under the License. package core import ( "github.com/hanchuanchuan/goInception/ast" "github.com/hanchuanchuan/goInception/expression" "github.com/hanchuanchuan/goInception/model" "github.com/hanchuanchuan/goInception/mysql" "github.com/hanchuanchuan/goInception/sessionctx" "github.com/hanchuanchuan/goInception/types" ) type ppdSolver struct{} func (s *ppdSolver) optimize(lp LogicalPlan) (LogicalPlan, error) { _, p := lp.PredicatePushDown(nil) return p, nil } func addSelection(p LogicalPlan, child LogicalPlan, conditions []expression.Expression, chIdx int) { if len(conditions) == 0 { p.Children()[chIdx] = child return } conditions = expression.PropagateConstant(p.context(), conditions) // Return table dual when filter is constant false or null. dual := conds2TableDual(child, conditions) if dual != nil { p.Children()[chIdx] = dual return } selection := LogicalSelection{Conditions: conditions}.init(p.context()) selection.SetChildren(child) p.Children()[chIdx] = selection } // PredicatePushDown implements LogicalPlan interface. func (p *baseLogicalPlan) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) { if len(p.children) == 0 { return predicates, p.self } child := p.children[0] rest, newChild := child.PredicatePushDown(predicates) addSelection(p.self, newChild, rest, 0) return nil, p.self } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (p *LogicalSelection) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) { retConditions, child := p.children[0].PredicatePushDown(append(p.Conditions, predicates...)) if len(retConditions) > 0 { p.Conditions = expression.PropagateConstant(p.ctx, retConditions) // Return table dual when filter is constant false or null. dual := conds2TableDual(p, p.Conditions) if dual != nil { return nil, dual } return nil, p } return nil, child } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (p *LogicalUnionScan) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) { retainedPredicates, _ := p.children[0].PredicatePushDown(predicates) p.conditions = make([]expression.Expression, 0, len(predicates)) for _, cond := range predicates { p.conditions = append(p.conditions, cond) } // The conditions in UnionScan is only used for added rows, so parent Selection should not be removed. return retainedPredicates, p } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (ds *DataSource) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) { _, ds.pushedDownConds, predicates = expression.ExpressionsToPB(ds.ctx.GetSessionVars().StmtCtx, predicates, ds.ctx.GetClient()) return predicates, ds } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (p *LogicalTableDual) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) { return predicates, p } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (p *LogicalJoin) PredicatePushDown(predicates []expression.Expression) (ret []expression.Expression, retPlan LogicalPlan) { simplifyOuterJoin(p, predicates) joinGroup := getCartesianJoinGroup(p) if joinGroup != nil { e := joinReOrderSolver{ctx: p.ctx} e.reorderJoin(joinGroup, predicates) newJoin := e.resultJoin return newJoin.PredicatePushDown(predicates) } leftPlan := p.children[0] rightPlan := p.children[1] var equalCond []*expression.ScalarFunction var leftPushCond, rightPushCond, otherCond, leftCond, rightCond []expression.Expression switch p.JoinType { case LeftOuterJoin, LeftOuterSemiJoin, AntiLeftOuterSemiJoin: predicates = p.outerJoinPropConst(predicates) dual := conds2TableDual(p, predicates) if dual != nil { return ret, dual } // Handle where conditions predicates = expression.ExtractFiltersFromDNFs(p.ctx, predicates) // Only derive left where condition, because right where condition cannot be pushed down equalCond, leftPushCond, rightPushCond, otherCond = extractOnCondition(predicates, leftPlan, rightPlan, true, false) leftCond = leftPushCond // Handle join conditions, only derive right join condition, because left join condition cannot be pushed down _, derivedRightJoinCond := deriveOtherConditions(p, false, true) rightCond = append(p.RightConditions, derivedRightJoinCond...) p.RightConditions = nil ret = append(expression.ScalarFuncs2Exprs(equalCond), otherCond...) ret = append(ret, rightPushCond...) case RightOuterJoin: predicates = p.outerJoinPropConst(predicates) dual := conds2TableDual(p, predicates) if dual != nil { return ret, dual } // Handle where conditions predicates = expression.ExtractFiltersFromDNFs(p.ctx, predicates) // Only derive right where condition, because left where condition cannot be pushed down equalCond, leftPushCond, rightPushCond, otherCond = extractOnCondition(predicates, leftPlan, rightPlan, false, true) rightCond = rightPushCond // Handle join conditions, only derive left join condition, because right join condition cannot be pushed down derivedLeftJoinCond, _ := deriveOtherConditions(p, true, false) leftCond = append(p.LeftConditions, derivedLeftJoinCond...) p.LeftConditions = nil ret = append(expression.ScalarFuncs2Exprs(equalCond), otherCond...) ret = append(ret, leftPushCond...) case SemiJoin, AntiSemiJoin, InnerJoin: tempCond := make([]expression.Expression, 0, len(p.LeftConditions)+len(p.RightConditions)+len(p.EqualConditions)+len(p.OtherConditions)+len(predicates)) tempCond = append(tempCond, p.LeftConditions...) tempCond = append(tempCond, p.RightConditions...) tempCond = append(tempCond, expression.ScalarFuncs2Exprs(p.EqualConditions)...) tempCond = append(tempCond, p.OtherConditions...) tempCond = append(tempCond, predicates...) tempCond = expression.ExtractFiltersFromDNFs(p.ctx, tempCond) tempCond = expression.PropagateConstant(p.ctx, tempCond) // Return table dual when filter is constant false or null. dual := conds2TableDual(p, tempCond) if dual != nil { return ret, dual } equalCond, leftPushCond, rightPushCond, otherCond = extractOnCondition(tempCond, leftPlan, rightPlan, true, true) p.LeftConditions = nil p.RightConditions = nil p.EqualConditions = equalCond p.OtherConditions = otherCond leftCond = leftPushCond rightCond = rightPushCond } leftRet, lCh := leftPlan.PredicatePushDown(leftCond) rightRet, rCh := rightPlan.PredicatePushDown(rightCond) addSelection(p, lCh, leftRet, 0) addSelection(p, rCh, rightRet, 1) p.updateEQCond() for _, eqCond := range p.EqualConditions { p.LeftJoinKeys = append(p.LeftJoinKeys, eqCond.GetArgs()[0].(*expression.Column)) p.RightJoinKeys = append(p.RightJoinKeys, eqCond.GetArgs()[1].(*expression.Column)) } p.mergeSchema() p.buildKeyInfo() return ret, p.self } // updateEQCond will extract the arguments of a equal condition that connect two expressions. func (p *LogicalJoin) updateEQCond() { lChild, rChild := p.children[0], p.children[1] var lKeys, rKeys []expression.Expression for i := len(p.OtherConditions) - 1; i >= 0; i-- { need2Remove := false if eqCond, ok := p.OtherConditions[i].(*expression.ScalarFunction); ok && eqCond.FuncName.L == ast.EQ { lExpr, rExpr := eqCond.GetArgs()[0], eqCond.GetArgs()[1] if expression.ExprFromSchema(lExpr, lChild.Schema()) && expression.ExprFromSchema(rExpr, rChild.Schema()) { lKeys = append(lKeys, lExpr) rKeys = append(rKeys, rExpr) need2Remove = true } else if expression.ExprFromSchema(lExpr, rChild.Schema()) && expression.ExprFromSchema(rExpr, lChild.Schema()) { lKeys = append(lKeys, rExpr) rKeys = append(rKeys, lExpr) need2Remove = true } } if need2Remove { p.OtherConditions = append(p.OtherConditions[:i], p.OtherConditions[i+1:]...) } } if len(lKeys) > 0 { lProj := p.getProj(0) rProj := p.getProj(1) for i := range lKeys { lKey := lProj.appendExpr(lKeys[i]) rKey := rProj.appendExpr(rKeys[i]) eqCond := expression.NewFunctionInternal(p.ctx, ast.EQ, types.NewFieldType(mysql.TypeTiny), lKey, rKey) p.EqualConditions = append(p.EqualConditions, eqCond.(*expression.ScalarFunction)) } } } func (p *LogicalProjection) appendExpr(expr expression.Expression) *expression.Column { if col, ok := expr.(*expression.Column); ok { return col } expr = expression.ColumnSubstitute(expr, p.schema, p.Exprs) p.Exprs = append(p.Exprs, expr) col := &expression.Column{ UniqueID: p.ctx.GetSessionVars().AllocPlanColumnID(), ColName: model.NewCIStr(expr.String()), RetType: expr.GetType(), } p.schema.Append(col) return col } func (p *LogicalJoin) getProj(idx int) *LogicalProjection { child := p.children[idx] proj, ok := child.(*LogicalProjection) if ok { return proj } proj = LogicalProjection{Exprs: make([]expression.Expression, 0, child.Schema().Len())}.init(p.ctx) for _, col := range child.Schema().Columns { proj.Exprs = append(proj.Exprs, col) } proj.SetSchema(child.Schema().Clone()) proj.SetChildren(child) p.children[idx] = proj return proj } // simplifyOuterJoin transforms "LeftOuterJoin/RightOuterJoin" to "InnerJoin" if possible. func simplifyOuterJoin(p *LogicalJoin, predicates []expression.Expression) { if p.JoinType != LeftOuterJoin && p.JoinType != RightOuterJoin && p.JoinType != InnerJoin { return } innerTable := p.children[0] outerTable := p.children[1] if p.JoinType == LeftOuterJoin { innerTable, outerTable = outerTable, innerTable } // first simplify embedded outer join. if innerPlan, ok := innerTable.(*LogicalJoin); ok { simplifyOuterJoin(innerPlan, predicates) } if outerPlan, ok := outerTable.(*LogicalJoin); ok { simplifyOuterJoin(outerPlan, predicates) } if p.JoinType == InnerJoin { return } // then simplify embedding outer join. canBeSimplified := false for _, expr := range predicates { isOk := isNullRejected(p.ctx, innerTable.Schema(), expr) if isOk { canBeSimplified = true break } } if canBeSimplified { p.JoinType = InnerJoin } } // isNullRejected check whether a condition is null-rejected // A condition would be null-rejected in one of following cases: // If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN or FALSE when one of its arguments is NULL. // If it is a conjunction containing a null-rejected condition as a conjunct. // If it is a disjunction of null-rejected conditions. func isNullRejected(ctx sessionctx.Context, schema *expression.Schema, expr expression.Expression) bool { expr = expression.PushDownNot(nil, expr, false) sc := ctx.GetSessionVars().StmtCtx sc.InNullRejectCheck = true result := expression.EvaluateExprWithNull(ctx, schema, expr) sc.InNullRejectCheck = false x, ok := result.(*expression.Constant) if !ok { return false } if x.Value.IsNull() { return true } else if isTrue, err := x.Value.ToBool(sc); err == nil && isTrue == 0 { return true } return false } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (p *LogicalProjection) PredicatePushDown(predicates []expression.Expression) (ret []expression.Expression, retPlan LogicalPlan) { var push = make([]expression.Expression, 0, p.Schema().Len()) for _, cond := range predicates { push = append(push, expression.ColumnSubstitute(cond, p.Schema(), p.Exprs)) } return p.baseLogicalPlan.PredicatePushDown(push) } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (p *LogicalUnionAll) PredicatePushDown(predicates []expression.Expression) (ret []expression.Expression, retPlan LogicalPlan) { for i, proj := range p.children { newExprs := make([]expression.Expression, 0, len(predicates)) for _, cond := range predicates { newExprs = append(newExprs, cond) } retCond, newChild := proj.PredicatePushDown(newExprs) addSelection(p, newChild, retCond, i) } return nil, p } // getGbyColIndex gets the column's index in the group-by columns. func (la *LogicalAggregation) getGbyColIndex(col *expression.Column) int { return expression.NewSchema(la.groupByCols...).ColumnIndex(col) } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (la *LogicalAggregation) PredicatePushDown(predicates []expression.Expression) (ret []expression.Expression, retPlan LogicalPlan) { var condsToPush []expression.Expression exprsOriginal := make([]expression.Expression, 0, len(la.AggFuncs)) for _, fun := range la.AggFuncs { exprsOriginal = append(exprsOriginal, fun.Args[0]) } for _, cond := range predicates { switch cond.(type) { case *expression.Constant: condsToPush = append(condsToPush, cond) // Consider SQL list "select sum(b) from t group by a having 1=0". "1=0" is a constant predicate which should be // retained and pushed down at the same time. Because we will get a wrong query result that contains one column // with value 0 rather than an empty query result. ret = append(ret, cond) case *expression.ScalarFunction: extractedCols := expression.ExtractColumns(cond) ok := true for _, col := range extractedCols { if la.getGbyColIndex(col) == -1 { ok = false break } } if ok { newFunc := expression.ColumnSubstitute(cond, la.Schema(), exprsOriginal) condsToPush = append(condsToPush, newFunc) } else { ret = append(ret, cond) } default: ret = append(ret, cond) } } la.baseLogicalPlan.PredicatePushDown(condsToPush) return ret, la } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (p *LogicalLimit) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) { // Limit forbids any condition to push down. p.baseLogicalPlan.PredicatePushDown(nil) return predicates, p } // PredicatePushDown implements LogicalPlan PredicatePushDown interface. func (p *LogicalMaxOneRow) PredicatePushDown(predicates []expression.Expression) ([]expression.Expression, LogicalPlan) { // MaxOneRow forbids any condition to push down. p.baseLogicalPlan.PredicatePushDown(nil) return predicates, p } // deriveOtherConditions given a LogicalJoin, check the OtherConditions to see if we can derive more // conditions for left/right child pushdown. func deriveOtherConditions(p *LogicalJoin, deriveLeft bool, deriveRight bool) (leftCond []expression.Expression, rightCond []expression.Expression) { leftPlan := p.children[0] rightPlan := p.children[1] for _, expr := range p.OtherConditions { if deriveLeft { leftRelaxedCond := expression.DeriveRelaxedFiltersFromDNF(expr, leftPlan.Schema()) if leftRelaxedCond != nil { leftCond = append(leftCond, leftRelaxedCond) } } if deriveRight { rightRelaxedCond := expression.DeriveRelaxedFiltersFromDNF(expr, rightPlan.Schema()) if rightRelaxedCond != nil { rightCond = append(rightCond, rightRelaxedCond) } } } return } // conds2TableDual builds a LogicalTableDual if cond is constant false or null. func conds2TableDual(p LogicalPlan, conds []expression.Expression) LogicalPlan { if len(conds) != 1 { return nil } con, ok := conds[0].(*expression.Constant) if !ok { return nil } sc := p.context().GetSessionVars().StmtCtx if isTrue, err := con.Value.ToBool(sc); (err == nil && isTrue == 0) || con.Value.IsNull() { dual := LogicalTableDual{}.init(p.context()) dual.SetSchema(p.Schema()) return dual } return nil } // outerJoinPropConst propagates constant equal and column equal conditions over outer join. func (p *LogicalJoin) outerJoinPropConst(predicates []expression.Expression) []expression.Expression { outerTable := p.children[0] innerTable := p.children[1] if p.JoinType == RightOuterJoin { innerTable, outerTable = outerTable, innerTable } lenJoinConds := len(p.EqualConditions) + len(p.LeftConditions) + len(p.RightConditions) + len(p.OtherConditions) joinConds := make([]expression.Expression, 0, lenJoinConds) for _, equalCond := range p.EqualConditions { joinConds = append(joinConds, equalCond) } joinConds = append(joinConds, p.LeftConditions...) joinConds = append(joinConds, p.RightConditions...) joinConds = append(joinConds, p.OtherConditions...) p.EqualConditions = nil p.LeftConditions = nil p.RightConditions = nil p.OtherConditions = nil joinConds, predicates = expression.PropConstOverOuterJoin(p.ctx, joinConds, predicates, outerTable.Schema(), innerTable.Schema()) p.attachOnConds(joinConds) return predicates }